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Abstract

Elucidating gene function is a major goal in biology, especially among non-model organ-

isms. However, doing so is complicated by the fact that molecular conservation does not

always mirror functional conservation, and that complex relationships among genes are

responsible for encoding pathways and higher-order biological processes. Co-expression, a

promising approach for predicting gene function, relies on the general principal that genes

with similar expression patterns across multiple conditions will likely be involved in the same

biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen

greatly diverged from model yeasts, approximately 60% of the predicted genes in the

genome lack functional annotations. Here, we leveraged a large amount of publicly available

transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN),

successfully recapitulating known protein networks, predicting gene function, and enabling

insights into the principles influencing co-expression. With 100% predictive accuracy, we

used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility

of guilt-by-association for determining gene function. Overall, co-expression is a powerful

tool for uncovering gene function, and decreases the experimental tests needed to identify

functions for currently under-annotated genes.

Author summary

A central problem in genetics is the connection between genotype and phenotype.

Computational approaches to predict gene function can be especially useful for non-

model organisms where extensive functional testing has not yet been performed. Co-
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expression to predict gene function is based on the principle that genes that share similar

expression patterns across multiple environmental conditions or perturbations are likely

to be involved in the same biological process. Here, we collected transcriptomic data from

the Cryptococcus neoformans field and built a robust co-expression network for predicting

gene function, especially biological process information. Not only are we able to use this

network for retrospective analysis of known gene clusters, but we are also able to make

prospective predictions about gene function, including the well-studied processes of cap-

sule and ergosterol biosynthesis. We also discovered a new role for 13 genes in the

response to DNA damaging agents, showing that co-expression can reveal new players in

conserved biological processes.

Introduction

The availability of genome sequences from non-model organisms has greatly increased with

the development of high-throughput sequencing techniques; however, insights into gene func-

tion have not kept pace. Without functional information, it is difficult to interpret the results

of genome-scale experiments, hindering our ability to model and predict cellular function.

There are several computational methods for predicting protein function, including machine-

learning approaches based on sequence [1,2], structure [3], homology, literature co-reference,

and integrated bioinformatics [4]. Co-expression, the coordinated regulation of two genes

across various conditions, is observed among genes with similar function [5], and the principle

of guilt-by-association has proven to be a successful approach for predicting gene function

based on co-expression patterns [6�¿‰8].Co-expression has consistently been a strong source for

gene function prediction; for example, a global effort aiming to improve gene function predic-

tion�¿‰theCritical Assessment of Function Annotation 3 challenge�¿‰foundthat expression-

based approaches outperformed all others [9].

Fungal pathogens pose a growing threat to human welfare. Cryptococcus neoformans, an

opportunistic human fungal pathogen that causes lethal meningitis in immunocompromised

individuals if left untreated, was recently given the highest priority of public importance by the

World Health Organization [10]. Of the major human fungal pathogens, C. neoformans is also

notable for being a basidiomycete, having diverged from the ascomycete lineage, which con-

tains the model yeast Saccharomyces cerevisiae and the majority of human fungal pathogens

approximately 400 million years ago [11]. Much of the current gene annotation information

comes from inferred orthology with S. cerevisiae, but only 17% of C. neoformans genes have S.

cerevisiae ortholog annotations due to the large evolutionary distance between these organisms.

Thus, nearly 60% of the genes in the C. neoformans genome remain �¿‰hypothetical�¿‰or �¿‰unspeci-

fied�¿‰and lack any computed or curated biological process Gene Ontology (GO) term informa-

tion [12,13]. Additionally, there have been numerous examples where sequence conservation

between C. neoformans proteins and model yeast failed to predict gene function [14�¿‰16].

As C. neoformans is less genetically tractable than model yeast, researchers have taken

advantage of transcriptomic approaches to help understand how the cells respond to various

environmental and genetic perturbations. For example, differential expression analysis helped

identify multiple stages of C. neoformans infection of the host [17], including the extensive cell

wall remodeling during host infection. Other studies have performed transcriptional profiling

across mutant strains to identify regulatory relationships between transcription factors that

control capsule formation, the key virulence factor in C. neoformans [18], or the response to

environmental pH [19]. Previous investigators have used computational approaches to predict
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gene function in C. neoformans through the generation of CryptoNetV1 [20]. However,

advances in transcriptomics, predictive algorithms, and structural modeling now allow for

more rigorous strategies in assigning potential function to unannotated genes.

Here, we leveraged the extensive publicly available transcriptional profiling data generated

by the C. neoformans research community to build a C. neoformans co-expression network

(termed CryptoCEN) that captures multiple dimensions of genetic and cellular function. For

example, CryptoCEN uncovered the capsule co-expression network that encompassed cell

cycle processes, revealed a co-expression signature between ergosterol and translation, and

identified a role for the Cdc42 and Cdc420 paralogs in kinetochore assembly. Importantly, we

were also able to demonstrate the high predictive value of co-expression by prospectively iden-

tifying 13 new proteins involved in DNA damage responses, a set of pathways responsible for

maintaining genome integrity that are thought to be promising targets for therapeutics [21].

We also identified new proteins involved in capsule, a critical virulence factor, and those that

contribute to fluconazole susceptibility. Together, this demonstrates the functional utility of

co-expression in understanding gene function.

Results

Generating CryptoCEN, a global co-expression network that captures

genomic function

We generated a co-expression network for C. neoformans based on the general principles

established in our previous implementation of a co-expression network for C. albicans using

our CalCEN R package [7]. First, we collected RNA sequencing (RNAseq) data from the NCBI

Sequence Read Archives (SRA). We chose studies that included at least 8 samples and filtered

for those examining the C. neoformansH99 type strain and its derivatives, including KN99.

This resulted in 1,524 runs across 34 studies (Fig 1A and S1 Table). The conditions for these

experiments included a wide range of environmental perturbations, such as differences in

nutrient source, cell cycle, chemical perturbations, and genetic mutation [18,19,22�¿‰27].To

ensure uniformity in analysis and data processing, the raw reads from each study were re-

mapped to the 9,189 transcripts from FungiDB release-49 of the C. neoformansH99 reference

transcriptome using RSEM with bowtie2 [28,29]. Similar to our work in C. albicans, to ensure

sufficient coverage, we removed runs where greater than 50% of the genes had zero expression,

yielding 1,523 samples in total (S1 Table). We used fragments per kilobase of transcript per

million mapped reads (FPKM) as the estimated expression for each gene under each condi-

tion, and then used Spearman rank correlation to measure the correlation between gene

expression profiles with the EGAD R package [7,30]. Rather than pooling all expression pro-

files for all studies, we built separate co-expression networks for each study and combined the

average across all networks, following best practices described by Ballouz and colleagues [6].

For studies designed to explore specific biology, the within-study expression variation may be

more meaningful than the between-study variation, and therefore grouping by study can

increase predictive accuracy. For each pair of C. neoformans genes, we then generated a value

between 0 and 1 to represent the rank of co-expression among all pairs of genes (Fig 1B and S2

Table). To show the data underlying representative pairs of gene co-expression, we chose four

levels of co-expression (0.4, 0.6, 0.8, 0.9) and four pairs of genes at each of these co-expression

levels. The FPKM values for the genes from each of the 1523 samples, colored by study, are

plotted (Fig 1C).

We then used UMAP dimensionality reduction and Louvain clustering methods [31,32] to

obtain a global visualization of the overall C. neoformans gene by expression matrix (Fig 1D).

To test the sensitivity of the embedding to UMAP parameters, we re-embedded the gene by
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Fig 1. Cryptococcus Co-Expression analysis identifies both known and unknown gene clusters. A) A gene-by-environment heatmap generated from

collected C. neoformans RNAseq experiments from the SRA. The genes are on the y axis, and conditions are on the x axis. B) A gene-by-gene heatmap

generated from Spearman rank correlation. C) Representative gene-by-gene expression patterns for pairs of genes at four different co-expression scores.

Each dot represents the expression in a single RNAseq run, and dots are colored by study. D) Embedding of the C. neoformans Co-Expression Network

(CryptoCEN) using UMAP for dimensionality reduction. Twenty-two clusters were identified using Louvain modularity clustering. The genes in each

cluster were analyzed for biological process GO term enrichment using Fisher’s exact test through FungiDB, and the most significantly enriched specific

term after Bonferroni correction for multiple testing was used for labelling. Clusters without significant GO term enrichment after multiple hypothesis

testing correction were labeled only by cluster number. E) Genes in cluster 6 sub-clusters were analyzed for both biological process and cellular

component GO term enrichment using Fisher’s exact test through FungiDB. F) Genes in cluster 16 sub-clusters were analyzed for both biological process

and cellular component GO term enrichment using Fisher’s exact test through FungiDB.

https://doi.org/10.1371/journal.pgen.1011158.g001
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expression matrix over a range of the key embedding parameters umap_a and umap_b. We

then plotted the resulting embeddings as a lattice of scatter plots. The embeddings show that as

umap_a and umap_b increase, the embeddings become more compact but largely show simi-

lar overall global and local structure (S1A Fig).

In the overall gene by expression UMAP, we identified 22 clusters (S3 Table) and used GO-

term enrichment analysis using Fisher’s exact test run through FungiDB of biological process

to predict functional signatures for each group. There was a clear cluster for cell cycle proteins

and DNA replication (cluster 11) and proteins involved in carbohydrate transport (cluster 14).

We also observed sub-structures within each cluster, such as in cluster 6, where there were

sub-clusters for the large and small ribosome proteins and for oxidative response proteins (Fig

1E). Additionally, in cluster 16, which was enriched for proteins involved in respiration, we

could see a distinct sub-cluster for those proteins encoded within the mitochondrial genome

(Fig 1F). Recapitulating known functional groups of genes demonstrate the efficacy of our

approach. However, we also identified 8/22 clusters for which there was no enrichment for any

biological process GO term annotation, highlighting the lack of functional information for

many genes in the C. neoformans genome.

Benchmarking CryptoCEN via Retrospective Gene Function Analysis

There are 8,334 genes currently identified in the C. neoformans genome, and 2,754 of them are

uncharacterized with no functional annotation across homology or gene function prediction

tools (Fig 2A). A goal of the co-expression network is to predict gene function for these under-

annotated genes. Therefore, we first benchmarked the ability of the CryptoCEN to retrospec-

tively predict all of the current C. neoformans GO term annotations without the NOT qualifier

collected from FungiDB [33]. Since GO terms form an ontological hierarchy, we propagated

annotations from more specific to more general terms and then filtered for terms having

between 20 and 1,000 annotations. For this benchmarking, we used guilt-by-association,

where the strength of the GO term prediction is based on the fraction of neighbors (or

weighted sum for a network where edges are weighted e.g., by co-expression score) in the net-

work with a given term. We then compared our predictions with the current set of C. neofor-
mans predictions using the area under the receiver operating characteristic curve (AUROC)

score and averaging over a 10-fold cross-validation. True-positive results were defined when

the CryptoCEN predicted GO term matched the known GO term from FungiDB and the

AUROC score provided an unbiased measure of enrichment and network quality. Using this

dataset, we found that the CryptoCEN network had a neighbor-voting AUROC of 0.74 (+/-

0.093) (Fig 2B), suggesting that CryptoCEN was not making predictions based on multifunc-

tional genes [7,34].

In comparison, using information from orthologous systems, such as BLAST or Crypto-

NetV1 [20], resulted in AUROCs of 0.78 (+/- 0.14) and 0.72 (+/- 0.11). Using orthologous

physical or genetic associations for S. cerevisiae had a predictive power roughly on par with

random chance (AUROCs of 0.56 ± 0.095 and 0.55 ± 0.87, respectively) (S1B Fig). In contrast

with BLAST or CryptoNetV1, which had better relative prediction over biological process

and molecular function, the CryptoCEN network had a relatively better prediction for the

cellular component terms. To quantify if orthologous systems are complementary, we evalu-

ated AUROC over all combinations of networks by summing over edge weights. The predic-

tive performance of CryptoCEN in combination with BLAST and CryptoNetV1 offered a

small but measurable increase compared to the combined predictive power of the two estab-

lished models. For both BLAST and CryptoNetV1, adding CryptoCEN substantially

increased performance to AUROCs of 0.86 (+/- 0.071) and 0.88 (+/- 0.076) respectively, and
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all three combined lead to the highest overall performance of 0.91 (+/- 0.06), compared with

0.90 (+/- 0.64) for BLAST and CryptoNetV1 only. Using all three networks specifically

benefited biological process and cellular component prediction (Fig 2B). This demonstrates

that CryptoCEN captures information undetected in previous prediction tools and that add-

ing RNAseq-based co-expression can increase the quality of gene function predictions, at

least retrospectively.

Fig 2. CryptoCEN can retrospectively predict biological process GO terms. A) The C. neoformans genome contains

many unannotated genes. UpSet plot of gene annotation information from different sources. Each bar in the upper

region shows the number of gene nodes in the intersection of the set of databases indicated by the rows with filled

circles in the lower region. The first column represents genes that are not included in any of the current annotation

databases, including orthology to the model yeast S. cerevisiae. B) Combining CryptoCEN with other sources of

information increases retrospective prediction accuracy. UpSet plot of the retrospective prediction accuracy, as

determined by the neighbor voting guilt-by-association (GBA) area under the ROC curve (AUROC). AUROCs values

range between 0.5 for random predictor and 1 for a perfect predictor. As data sources are combined, the prediction

accuracy increases. Each annotated GO term is colored by ontology biological process (BP), cellular component (CC),

or molecular function (MF). C) Prediction accuracy increases as the number of studies included in the network

increases. Mean neighbor voting GBA performance for the CryptoCEN built over random subsets of RNAseq studies.

The blue curve represents a mean of a nonparametric locally estimated scatterplot scattering (LOESS) fit.

https://doi.org/10.1371/journal.pgen.1011158.g002
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A potential limitation of CryptoCEN is that the transcriptome space has not been fully

explored, and additional RNAseq studies may be needed to break spurious correlated expres-

sion by measuring under new environmental contexts. To address this question, we assessed

how the predictive accuracy of the network changes as we remove studies from the network.

For each k in the range [1, 33], we sampled different combinations of studies of size k and esti-

mated their ability to predict gene function annotations. We found that as we increased the

studies from 1�¿‰10,there was a rapid rise in average performance from ~0.64 to ~0.71. After

this point, performance increases steadily to 0.74 when approaching the full set of 34 studies

(Fig 2C). This suggests that we have sufficient studies of the transcriptome to build a robust

co-expression network, but that the accuracy will improve with the integration of additional

studies. Although the number of RNAseq studies needed to generate a co-expression network

will vary based on genetic background and the fraction of transcriptome space represented,

this finding may also help inform the experimental design to generate co-expression networks

in other organisms.

While the embedding (Fig 1D) and co-expression network are derived from the same data,

due to the different processing strategies, they may diverge. To examine this, for each embed-

ding cluster, we computed how much the intra-cluster associations are enriched over the

inter-cluster associations for closeness in the co-expression network. Specifically, for each

cluster, we selected 1000 query genes independently at random from the cluster and a second

gene independently at random from within the cluster and labeled these edges as intra-cluster

associations. Then, for each of the query genes, we selected a gene independently at random

from all genes not in the cluster and labeled these edges inter-cluster associations. We then

computed the area under the receiver operator characteristic (AUROC) for the enrichment of

the intra-cluster associations over the inter-cluster associations based on the co-expression

score. Recall that if there was no statistical enrichment, we would expect the AUROC to be

~0.5 and if there was perfect enrichment (all intra-cluster associations had higher co-expres-

sion scores than inter-cluster associations) then the AUROC would be 1. We found that the

embedding of cluster enrichment scores ranged from ~0.5 to ~0.9, with higher enrichment for

clusters on the left (S1C Fig). This suggests that the co-expression provides additional func-

tional enrichment beyond just the gene by expression matrix embedding.

Evolutionary constraints can inform co-expression

Among proteins that form physical interactions, we hypothesized that those participating in

obligate complexes may have stronger selective pressure for co-expression. For example, if all

the sub-units need to be expressed at stoichiometric levels for the complex be functional, then

the metabolic cost of expressing isolated subunits is wasted, leading to a selective pressure for

co-expression [35]. Moreover, incorrect expression outside of stoichiometric ratios can gener-

ate proteotoxic stress, as the uncomplexed subunits are actively detrimental to the cell, as dem-

onstrated during cases of aneuploidy [36].

Given that there is not a well-curated list of complexes in C. neoformans, we leveraged the

better annotated complexes in S. cerevisiae and used sequence homology to infer candidate

complexes. To support this strategy, we reasoned that complexes that are highly evolutionarily

conserved may have robust cooperative function. We collected S. cerevisiae complexes from

EBI (2021-10-13) and filtered out sub-units that were nucleic acid, small molecule, mitochond-

rially encoded, or unrecognized, yielding 616 multi-subunit complexes. Of these, 408 had at

least 2 distinct subunits with a one-to-one ortholog in C. neoformans identified by OrthoMCL

[37]. Within these complexes, there are 13,950 pair-wise co-complex interactions of C. neofor-
mans proteins (S4 Table). Of these, over half (7,142) are interactions within the 17 annotated
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ribosomal or ribonucleic protein complexes, with an average co-expression score of 0.84. The

other half of the candidate interactions (6,808) had an average co-expression score of 0.75 (Fig

3A). This finding supports the hypothesis that there is selective pressure to co-express mem-

bers of protein complexes.

A recently developed approach to predict function is to use co-evolutionary networks;

beyond being part of the same complex, co-evolution is based on the principle that function-

ally related genes will show similar rates of evolution across speciation events [38]. To calculate

this, the evolutionary rate values are estimated for each branch of an orthologous gene’s phy-

logeny and compared with each other gene to determine the rate of co-evolution [38]. We

hypothesized that combining a co-evolutionary network would increase the accuracy of the

co-expression network. Therefore, we generated a co-evolutionary network for C. neoformans
using 15 related species (S2A Fig), with the caveat that the species tree of related organisms is

much sparser for C. neoformans and relatives compared to the 331 available Saccharomycotina

yeast, making this analysis less robust that the established S. cerevisiae co-evolution informa-

tion [38]. We then examined whether combining the co-evolutionary network would increase

the accuracy of the co-expression network. Here, we subset the analysis to those genes with

clear ortholog groups (S5 Table). However, we identified very little correlation between co-

expression and co-evolution networks (Fig 3B and S2B Fig), limiting our ability to integrate

this information. This can be potentially attributed to the low density of closely related species

genome sequences, which limits our ability to identify co-evolution signatures.

It is also possible to examine the evolutionary pressures on co-expression in the context of

gene duplication. Gene duplication provides an opportunity for either shared functionaliza-

tion, as in the case of the histone proteins, or neofunctionalization and sub-functionalization

[39,40]. Among genes with clear ortholog groups (S5 Table), we examined the co-expression

of each protein with every other protein in each orthogroup and plotted the distribution (Fig

3C). Given that the co-expression scores are ranked, a random distribution should be flat.

However, we observed that the co-expression is less than random, suggesting that there is pres-

sure to be differentially transcribed from other genes within an orthogroup. To characterize

the distribution, we fit the distribution with a skew-normal curve, and the alpha parameter is

significantly above zero (4.4 with a standard deviation of 0.56), indicating the extent of the

skew. The outlier with high co-expression between orthologous genes were the H2A and H2B

histone genes. This bias towards a shift in expression between paralogs is consistent with previ-

ous results in multiple systems, where changes in transcription are required for evolutionary

divergence in function [41�¿‰43].

Many paralogs, when duplicated, have differences in baseline expression levels that explain

their differential function. To examine whether overall expression is predictive of co-expres-

sion, we performed a global analysis comparing co-expression levels to overall expression lev-

els. This demonstrated a small bias for genes with low expression against having high co-

expression partners (Fig 3D). In particular, 80% of co-expressed pairs (coexp score> 0.8) have

a geometric mean expression greater than 13 FPKM, while only 40% of all pairs have a geomet-

ric mean expression above this threshold. Therefore, this may not be a major driver of co-

expression patterns.

In C. neoformans, we have also observed the duplication of entire signaling cascades, as

opposed to single gene duplications [44]. One notable example is the duplication of Ras1/Ras2,

Cdc42/Cdc420 and Rac1/Rac2 proteins [44�¿‰46],with each paralog supporting specific cellular

functions. For example, Cdc42 serves as a critical regulator of thermotolerance and virulence

[46,47], while Cdc420 plays a minor role in the expression of virulence-associated phenotypes

under basal conditions [48]; this is consistent with the higher baseline expression of Cdc42

compared with Cdc420. Importantly, Cdc42 is critical for septin localization, with Cdc10
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Fig 3. Evolutionary constraints inform co-expression analyses. Distribution of co-expression scores for C. neoformans gene pairs across different

types of evolutionary conservation. A) C. neoformans gene pairs with orthology to S. cerevisiae gene pairs that encode for proteins that are members

of the same complex (13,950 pairs over 1,304 genes, coexp score mean: 0.80, IRQ50: [0.71, 0.90]), B) Significantly co-evolving gene pairs (140,592

pairs over 4,269 genes, coexp score mean: 0.50, interquartile-range at 50% (IRQ50): [0.40, 0.60]), and C) Paralogous gene pairs (1,056 pairs over 550

genes, coexp score mean: 0.58, IRQ50: [0.46, 0.67]). D) Scatter plot of the co-expression score by the geometric expression of the partners. E) The

co-expressed partners at a 0.8 threshold for co-expression score of the duplicated genes Cdc42 and Cdc420 were compared and visualized in

Cytoscape. Kinetochore proteins are highlighted in blue, septin proteins in purple, and unannotated or uncharacterized proteins are highlighted in

yellow. Width of the lines indicates co-expression score. F) Tubulin is altered in the cdc420Δ and cdc42Δ mutant strains compared with the H99

wildtype. Tubulin was visualized by fusion of α-tubulin with GFP. Cells were incubated in liquid YPD at 30�¿‰Cbefore imaging. Images taken at 40X

magnification, scale = 5 microns.

https://doi.org/10.1371/journal.pgen.1011158.g003
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completely mis-localized in the cdc42Δ mutant, likely explaining similar defects in thermoto-

lerance in the cdc42Δ and septin mutant strains [48].

We analyzed the co-expression partners for the paralogous Cdc42 and Cdc420 proteins,

with visualization using Cytoscape, where nodes represent genes and edges connect two co-

expressed genes, with a co-expression score threshold of 0.8. From this, we identified entirely

distinct networks for the two paralogs. Consistent with prior genetic and physiological data,

Cdc42 was highly co-expressed with multiple septin proteins, including Cdc10 (Fig 3E). In

contrast, Cdc420 was co-expressed with 10 kinetochore or spindle pole body proteins (Fig 3E),

including parts of the middle layer, outer layer (Dam1/DASH), and spindle assembly check-

point [49�¿‰52].Previous work on physical interaction partners for kinetochore proteins

revealed that Spc25 interacts with Cdc420 [53], giving additional evidence for the predicted

relationship between Cdc420 and kinetochores.

Therefore, to test whether a loss-of-function mutation of Cdc420 would alter kinetochore

function, we examined microtubule and nuclear dynamics in strains with either fluorescently-

tagged α-tubulin (Tub1) or histone H4 proteins [49] in the WT, cdc42Δ, and cdc420Δ strains,

using these as a proxy for kinetochore function. The H4-GFP protein highlighted a similarly

well-defined nucleus in each strain and each growth condition (S2C Fig). In the wild-type

strain, expression of the Tub1-GFP fusion protein demonstrated clear and elongated microtu-

bules in cells undergoing cell division (Fig 3F). In contrast, both the cdc42Δ and cdc420Δ
strains showed more cells with punctate rather than polymerized GFP signal, consistent with a

relative defect in α-tubulin polymerization into microtubules (Fig 3F). Although there may be

differences in this polymerization between the mutant strains, we were unable to resolve it and

identify a clear defect in just the cdc420Δ strain. Moreover, all strains showed similar growth in

response to the microtubule destabilizing compound nocodazole (S2D Fig). These data dem-

onstrate that there is an association between kinetochore function and both the Cdc420/Cdc42

proteins, and they also suggest that there is not a specific defect in microtubule assembly in the

cdc420Δ compared with the cdc42Δ mutant strain. However, it is possible that there is a more

specific defect in kinetochore function that is not captured in this phenotypic assay. It is also

possible that the large set of uncharacterized genes (Fig 3D) that are co-expressed with CDC42
and CDC420 have roles in kinetochore or microtubule assembly, but the lack of current anno-

tation prevents us from making those connections. This demonstrates that co-expression can

help identify hypotheses to test, but may not have the resolution to identify a specific pheno-

type for a given mutant strain.

Virulence factor retrospective cluster analysis

To understand how the co-expression network can broadly identify new genes for a given

function, we first retrospectively explored the network localized to the genes involved in well-

studied functions.

The major virulence factor of C. neoformans is the polysaccharide capsule [54]. To seed the

network we used a set of known capsule biosynthetic genes [54], identified all the first neigh-

bors in the network with a co-expression score higher than 0.8, and then selected those with at

least 5 co-expression edges to other genes in the set for visualization using Cytoscape [55] (Fig

4A and S6 Table). Interestingly, this analysis revealed that although Cap59, Cap60, Cap64 and

Cas35 are highly interconnected and co-expressed, there are other capsule biosynthetic genes,

such as Cas33, Cas34, and Cap6 that are not directly co-expressed with any other capsule gene

above the 0.8 score threshold. Given the importance of condition-dependent adaptations in

other cell surface features to promote capsule attachment, we also saw co-enrichment for cell

wall and membrane biosynthesis genes in this capsule gene cluster. The other major signature
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Fig 4. CryptoCEN can recapitulate core biological processes in C. neoformans. A) A co-expression network for capsule was generated by starting

with genes known to be involved in capsule biosynthetic genes. All co-expressed partners with a score> 0.8 and at least 5 co-expression edges with

known capsule genes were visualized in Cytoscape. Specific functional classes are highlighted with different colors. Edge width corresponds to

degree of co-expression. B) Identification of genes involved in capsule. The indicated mutants were incubated in RPMI at 37�¿‰Cwith 5% CO2 for

three days before staining with India ink and imaging using brightfield microscopy at 20X magnification. Increased or decreased capsule was

determined by comparison with the wild type or cap64Δ control strains. C) A co-expression network for ergosterol biosynthesis was started with

the known ergosterol biosynthetic genes and all co-expression partners that showed>0.8 co-expression score and interaction with>3 ergosterol

biosynthetic genes. Specific functional classes are highlighted with different colors. Edge width corresponds to degree of co-expression. D)

Identification of genes involved in fluconazole susceptibility. The indicated strains were grown overnight at 30�¿‰Cin liquid YPD medium, and the

serially diluted cells were spotted onto YPD agar with or without 4 μg/mL fluconazole. The plates were incubated at 30�¿‰Cand imaged after 2 days.

https://doi.org/10.1371/journal.pgen.1011158.g004
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in the remaining genes was for proteins involved in cell cycle and DNA maintenance. This

connection is consistent with previous literature on cell cycle and capsule in C. neoformans
[16,56]. Notably, the only transcriptional regulators that appeared to show co-expression with

capsule genes were orthologues to Ctk2 and the uncharacterized transcription factor Fcz4,

despite the known importance of many other specific transcription factors in regulating cap-

sule [15,57�¿‰59].This complements the study from Kim et al., which focused on the capsule

regulatory genes in CryptoNet and observed connections between the regulatory cascades but

not the capsule biosynthetic genes [20]. Potentially, this is due to the regulation of signaling

cascades at the post-translational level, rather than the transcript level. To test the prospective

accuracy of CryptoCEN for capsule-related genes, we tested 12 mutant strains for genes in the

capsule network for their ability to generate capsule. We identified six mutant strains with a

defect in capsule, and two with an increased capsule. Notably, none of these capsule-deficient

mutant strains exhibited dry colony morphology, suggesting that the defect may be at the level

of capsule maintenance at the cell surface, as the strains are still able to secrete enough capsule

to generate a mucoid colony.

As a second test case, we examined the ergosterol biosynthetic cascade, as ergosterol and its

biosynthesis are important antifungal drug targets [60]. We seeded the network with 23 ortho-

logs of the known ergosterol biosynthetic machinery and filtered for the first neighbors with at

least three co-expression edges with ergosterol biosynthesis proteins and a score of at least 0.8

(Fig 4C and S6 Table). This resulted in a densely connected network, but with a somewhat sur-

prising structure�¿‰theergosterol genes were not organized in biosynthetic order. For example,

Erg1, Erg3, Erg5, and Erg25 were highly interconnected despite operating in different parts of

the ergosterol biosynthesis pathway. We also observed many proteins involved in translation

with strong co-expression with the ergosterol genes, especially Erg20 and Erg6. To test the con-

nection between these co-expressed genes with ergosterol, we turned to hypersensitivity to the

antifungal agent fluconazole, which acts by targeting ergosterol biosynthesis and impacting

membrane fluidity [60]. When testing available mutant strains for changes in fluconazole sen-

sitivity, we observed that deletion of CAP64, CKB1, BIM1, and CNAG_06753 resulted in

increased susceptibility to fluconazole, whereas deletion of CNAG_02755 and ARP4 decreased

fluconazole susceptibility (Fig 4D).

Overall, we were able to consistently replicate known networks through CryptoCEN, and

potentially identify new signatures associated with core biological processes, and identify new

genes involved in capsule and fluconazole susceptibility. This demonstrates that there is utility

in using co-expression to explore gene function in C. neoformans.

Identification of additional genes involved in DNA repair, including novel

uncharacterized proteins

DNA repair is an essential and highly conserved function in cells that ensures genome stability.

From a biomedical perspective, SNPs in mismatch repair genes have been linked with hyper-

mutator phenotypes in C. neoformans, allowing for increased drug resistance and virulence

[61�¿‰63].From an evolutionary perspective, comparative genomic analysis has revealed gene

presence/absence variation among canonical DNA repair genes in other microeukaryotes

[64,65], but the discovery of novel DNA repair genes has been lacking. In C. neoformans, the

full set of DNA repair genes is unknown. We hypothesized that genes coexpressed with those

known to contribute to DNA repair�¿‰34ERCC, MLH, MSH and RAD proteins identified by

Ashton and colleagues [66]�¿‰wouldallow us to identify additional uncharacterized proteins

involved in this core biological process.
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To do so, we filtered for co-expression scores > 0.8 and at least four co-expression edges

with known DNA repair genes, and then used this set to generate a network that we visualized

in Cytoscape (Fig 5A). This revealed a dense network of mismatch repair genes centered

aroundMSH2 andMSH6, and a sparser network with more of the ERCC excision-repair

Fig 5. Identification of new proteins involved in DNA damage responses. A) A co-expression network for DNA

damage was started with 34 known genes involved in DNA repair, and all co-expression partners that showed> 0.8

co-expression score and interaction with at least 5 of the known DNA repair genes. Specific functional classes are

highlighted with different colors. Edge width corresponds to co-expression score, and node size represents number of

connections to other genes in the network. B) Identification of novel genes involved in DNA damage responses. The

indicated strains were grown overnight at 30�¿‰Cin liquid YPD medium, and the 10-fold serially diluted cells were

spotted onto YPD agar. For UV damage, the plates were immediately subjected to 200 μJ UV. For EMS, the cells were

incubated in 100 μM EMS for 1 hr before serial dilution and plating. The plates were incubated at 30�¿‰Cand imaged

after 2 days.

https://doi.org/10.1371/journal.pgen.1011158.g005
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genes. The initial seed set of DNA damage response genes (purple) was surrounded by genes

with known functions in DNA damage and repair, including the C. neoformans-specific radia-

tion resistance transcription factor, Bdr1 [67]. The centrality of some of the cell cycle and

DNA replication genes in this network, including Bud14, Kel1, Pol3 and Rig2/Dbp11, high-

lights the strong association between DNA repair and cell cycle processes.

Beyond the known proteins in this DNA damage response network, we identified many

highly co-expressed hypothetical proteins that we hypothesized may play a role in DNA repair,

including proteins of unknown function as well as those with known roles in other aspects of

cell biology. Therefore, we tested 13 available deletion mutants of these strains for their

responses to either ethyl methanesulfonate (EMS) or UV radiation, as a measure of two differ-

ent DNA damage response pathways�¿‰DNAalkylation and DNA lesions (S7 Table). Notably,

all 13 of the mutants tested had a phenotype on EMS, including 9 resistant and 4 sensitive

strains (Fig 5B). Of the four EMS-sensitive strains, two were also sensitive to UV damage.

To determine whether the predictive accuracy was above baseline, we tested a set of random

mutants for their phenotypes on DNA damaging agents. A potential complication is that DNA

replication and damage responses are amongst the most highly co-expressed genes in Crypto-

CEN. Therefore, we chose 12 genes that showed a similar rank of co-expression as our

matched control set for determining the baseline rate of phenotypes in response to DNA dam-

aging agents. Here, only 4 of the mutant strains showed a phenotype (S2 Fig), with two strains

showing sensitivity to EMS and two showing slight resistance. Therefore, CryptoCEN has high

prospective predictive accuracy for gene function annotation.

One of the UV-sensitive mutants wasMRC1/CNAG_03023, a hypothetical protein with an

MRC1 (mediator of replication checkpoint)-like domain with 13 co-expressed partners in the

network. When we performed the reciprocal co-expression analysis usingMRC1 as the seed,

in addition to the 13 previously identified partners, we identified an additional 13 genes with

roles in chromatin binding, DNA damage responses, or cell cycle (S7 Table). The presence of

the MRC1 domain in the CNAG_03023 sequence suggested a putative function for

CNAG_03023 as a checkpoint protein that would be required for the response to multiple

types of DNA damage.

The other UV-sensitive strain was the deletion for CNAG_06573, a basidiomycete-specific

hypothetical protein with 5 co-expressed partners. This protein did not have any conserved

domains, and although reciprocal co-expression analysis identified a further 18 proteins

involved in DNA damage, cell cycle, and DNA binding, there was not a clear signature of func-

tion beyond this larger category (S7 Table). Therefore, we turned to structural homology,

using AlphaFold Monomer v2.0 2022-11-01 [68] to give a predicted structure to use as an

input to FoldSeek [69]. The well-structured N-terminal domain of CNAG_06573 (residues

~700�¿‰1200)had homology with the CATH Superfamily [70] Leucine-rich Repeat Variant

(1.25.10.10), which contains DNA repair protein rad26 (rad26) from S. pombe (sequence iden-

tify of 11.4 and E-value of 2.5e-4), and the ATR-interacting protein (ATRIP) fromH. sapiens
(sequence identity of 11.2 and E-value of 2.1e-2) [71,72]. ATRIP domains recognize the Repli-

cation Protein A complex associated with single stranded DNA to facilitate DNA damage

response [71,72]. Therefore, although CNAG_06573 does not share sequence similarity with

these known DNA-damage response proteins, the structural homology suggests that

CNAG_06573 may act as an ATRIP in C. neoformans.
The CNAG_05141Δ mutant had minor sensitivity to EMS compared to the wild-type con-

trol, and was not sensitive to UV damage. Based on AlphaFold and FoldSeek analysis, this pro-

tein contained a predicted EamA-like transporter domain [73] and had structural homology

to the Nipal2 and Nipa1 transporter proteins. Potentially, loss of this transporter may lead to a
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higher intracellular concentration of EMS resulting in increased cell death. Notably, this gene

was also co-expressed with multiple capsule biosynthetic genes.

The CNAG_00571Δ mutant also displayed an EMS-resistant phenotype. This gene encodes

a hypothetical protein with a predicted karyogamy protein 9 (KAR9) domain. Kar9 facilitates

nuclear congression during karyogamy in S. cerevisiae [74]. Previous work on the karyogamy

machinery in C. neoformans, however, had indicated that an ortholog to S. cerevisiae KAR9
(ScKAR9) was not present in C. neoformans [75]. These searches were based on sequence

homology and synteny, and CNAG_00571 is not syntenic to ScKAR9 and does not share

major sequence homology, despite the predicted Kar9 domain. However, yeast are known to

evolve rapidly, resulting in low syntenic conservation [76], and remote homology may be diffi-

cult to detect [77]. Using a structural homology-based approach, we found that the predicted

structure of CNAG_00571 shared with homology with the CATH superfamily 1.20.58.70,

which is enriched in syntaxin proteins which are known to facilitate membrane-membrane

fusion events within the cell. However, the lack of sequence homology with ScKAR9 and the

placement of CNAG_00571 in a Tremellales-specific ortholog group (OG6-532064) indicates

that this gene does not share an evolutionary history with ScKAR9. Despite this, we hypothe-

size that CNAG_00571 is indeed functioning as a Kar9 protein during karyogamy by facilitat-

ing nuclear-nuclear fusion in C. neoformans, and thus we propose naming CNAG_00571 as

KAR9.

We attempted a similar structural-based approach for CNAG_06984, which showed spe-

cific hypersensitivity to EMS. This protein may be involved in double-stranded break repair,

based on the specific hypersensitivity phenotype [78]. However, neither structure nor

sequence-based approaches yielded any related proteins with high confidence. Furthermore,

three genes specific to the Tremella lineage�¿‰CNAG_02666, CNAG_07605, CNAG_02930,

whose mutants were all resistant to EMS�¿‰hadlow-quality structural predictions, likely due to

a lack of the required training data.

Beyond the uncharacterized proteins, we also identified two genes that had previously been

implicated in different cellular pathways, but still showed an EMS-resistant phenotype. Ccz1

(CNAG_04456) is a guanidine exchange factor (GEF) that forms an active complex with Mon1

(CNAG_00971) [79], although these two genes are not co-expressed in C. neoformans. In S. cer-
evisiae, this Ccz1-Mon1 complex activates Rab7, which is involved in intracellular trafficking

to the lysosome, including trafficking of the autophagosome to the lysosome [80�¿‰82].Autop-

hagy is known to be induced by DNA damage, where the inhibition of autophagy can sensitize

cancer cells to DNA damage [83�¿‰85].Therefore, we hypothesize that the loss of CCZ1 in C.

neoformans leads to a higher overall level of autophagy, which may provide a protective effect

against DNA damage. GO term enrichment of CCZ1 co-expression partners also showed

enrichment for macroautophagy (p = 1.87e-4).

The other previously annotated gene implicated in DNA repair using CryptoCEN is CMK1,

which is more resistant to EMS. This gene encodes a calmodulin-dependent kinase (CaMK)

and serves as an effector of the calcium-calcineurin signaling pathway, an important compo-

nent of fungal stress responses [86�¿‰88].Previous studies have shown that this pathway can

play a role in cell cycle control in S. cerevisiae and other organisms [89], with a function at the

G2/M checkpoint [90�¿‰92].In C. neoformans, loss of CMK1may inhibit the mutant from the

appropriate stress-induced cell cycle arrest, leading to increased growth in the presence of the

cellular stress. GO term enrichment of the CMK1 co-expression partners shows enrichment

for DNA recombination, metal ion transport, and negative regulation of exit from mitosis (S7

Table). Together, this analysis of the DNA damage co-expression network identified multiple

new proteins involved in DNA damage response in C. neoformans, including proteins without

sequence or structural homology to known DNA damage response proteins.
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Discussion

Cryptococcus neoformans, despite being a deadly human fungal pathogen and the cause of

mortality for nearly 200,000 people per year [93], has a genome that is vastly under-annotated.

This lack of functional annotation information makes it difficult to interpret or identify genetic

signatures or shed light on genotype-phenotype associations. Co-expression analysis provides

a platform for predicting gene function, thus potentially decreasing the experiments needed to

define the function of a gene. Recently, we generated a co-expression network for the model

fungal pathogen Candida albicans, based on available RNAseq data from the reference strain

SC5314, which allowed us to predict the function of gene as a cell cycle chaperone protein [7].

Co-expression across diverse clinical isolates of C. albicans was able to identify regulators of

morphogenesis and virulence [94]. These, and others, demonstrated the utility of co-expres-

sion in understanding fungal pathogen biology [95,96]. However, these studies were per-

formed in ascomycetes, which are closer to the model yeast S. cerevisiae, and thus there is

much that can be inferred from orthology in these organisms. For the basidiomycete C. neofor-
mans, there are more genes without clear orthologs and gene annotation information, making

the need for computational predictions more urgent. Here, we leveraged publicly available

RNAseq data from the C. neoformans research community to build a robust co-expression net-

work for C. neoformans. We demonstrate that co-expression can predict gene function, both

retrospectively as in the case of capsule and ergosterol biosynthesis, and prospectively, as in

the case of DNA damage response proteins. Through co-expression, we were able to identify

functions for 11 previously uncharacterized genes, including 6 that are specific to the Tremel-

lales family. Overall, this demonstrates the utility of co-expression for predicting gene function

in C. neoformans.
Co-expression network generation has been performed using multiple methods. We chose

to use spearman rank correlation because it is relatively robust and interpretable, due its sim-

plicity, and is among the top-performing co-expression methods in a recent benchmark [97].

We normalized expression scores based on Counts adjustment with TMM Factors (CTF) and

Counts adjustment with Upper quartile Factors (CUF) normalizations. As an alternate to our

approach, there is SNAIL, a method based on smooth quantile normalization aimed at reduc-

ing spurious associations [97]. Future refinements of the CryptoCEN network could use these

alternate methods.

Importantly, CryptoCEN complements the current gene function annotation pipelines for

C. neoformans by adding information not already captured from these databases. CryptoNet is

based on a Bayesian integration of large-scale genomic and proteomic datasets, and this

approach was effective at identifying genes involved in core virulence and drug resistance phe-

notypes [20]. Combining CryptoCEN with CryptoNET increased the retrospective predictive

accuracy, and for a specific capsule network, we observed complementary connections.

A persistent limitation of CryptoCEN, however, is that without initial annotations, we can-

not propagate information across the network. In C. neoformans, due to the high number of

genes without annotation, there are many instances in which there is no signature or annota-

tion in the entire network. This is especially the case for Cryptococcus or Basidiomycete-spe-

cific genes. For example, CNAG_00080 is a hypothetical protein that is Cryptococcus-specific.

However, this gene is lowly expressed, and the top co-expression partner has a score of only

0.78, which already limits our ability to identify partners. Of the top 50 co-expressed partners,

only 5 have any annotation at all, and the others are all hypothetical or unspecified product. As

another example, CNAG_00465 is highly expressed basidiomycete-specific gene with many

co-expressed partners; however, all the partners are only annotated as hypothetical proteins

and there is no GO term enrichment. In these cases, the co-expression network has no
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information that can be used to predict gene function for these unknown proteins. In the

future, functional genomic screens of mutant libraries will be critical for building the baseline

information needed to predict gene function. For this reason, we focused on extending our

information about known processes in C. neoformans; the DNA damage and response pathway

provided a clear opportunity to identify novel proteins involved in a core biological process.

Moreover, DNA damage and response processes in pathogens are thought to be potential tar-

gets of therapeutic potential [21]. Future work will include mechanistic studies to determine

how these specific proteins contribute to EMS resistance or hypersensitivity.

Methods

Collating C. neoformans RNAseq studies

Publicly available RNAseq studies were downloaded from SRA based on searches for Crypto-
coccus neoformans and filtered based on H99 or KN99 strains and mutant derivatives. For each

study we collected the study accession, taxon, number of runs, study title and depositor. Using

this information, where possible, we linked each study to a published journal article, and col-

lected the experimental design and culture conditions for each strain.

Mapping RNAseq reads

RNA expression was estimated by aligning reads to Cryptococcus neoformansH99 coding tran-

scripts using release 49 from FungiDB downloaded on 8/05/2021 from https://fungidb.org/

common/downloads/release-49/CneoformansH99/fasta/data/FungiDB-49_

CneoformansH99_AnnotatedTranscripts.fasta. This release contains 9,189 ORFs defined by

distinct unique cnag_id identifiers. Of these, 4 are labeled as pseudo genes and 838 are labeled

as alternative splicing variants. Uncharacterized proteins were defined as non-pseudo gene,

and the description does not contain �¿‰hypotheticalprotein�¿‰or �¿‰unspecifiedproduct�¿‰.SRA

files were downloaded using prefetch and converted to FASTQ format using fastq-dump from

the NCBI SRA-ToolKit package and then aligned using the RSEM package v1.2.31 [28] with

bowtie2 [29] using the default settings. To assess sample quality, we measured the percent of

genes with non-zero expression and number of reads that map uniquely to the C. neoformans
genome. Of the 1,524 runs, the average percent genes with non-zero expression was 89%, with

a minimum of 61%. The mean number of reads that mapped uniquely to the C. neoformans
genome was 7.1M, and the minimum was 62k (S4 Fig). For each study, the co-expression rank

was estimated by the Spearman rank correlation coefficients of the FPKM values across all

runs using in the study the EGAD R package (24) and then averaged across all studies to give

the final network.

Complementary networks

To build the sequence homology-based BlastP network, we used Protein-Protein BLAST

2.12.0+(BlastP) to compute sequence similarity between all C. neoformans open reading

frames. We then ranked the bit-scores, and scores having identical values were given the aver-

age rank, then converted into a network using the build_weighted_network() function from

the EGAD package.

Data for S. cerevisiae S288C was gathered from the Saccharomyces Genome Database

(SGD) including the reference genome, all translated open reading frames, and annotations to

the slim subset of the gene ontology using release 64-3-1 from 4/21/2021. S. cerevisiae genetic

and physical interactor networks were built from data collected from BioGRID release 4.4.216,

filtering for interactions with experimental system type of ‘genetic’ and ‘physical’ respectively,
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mapping to C. neoformans open reading frames by BlastP orthology, and building into net-

works using the build_binary_network() from EGAD package. The sparse binary networks

were then extended defining edge weights as the inverse path length using the extend_network

() function from the EGAD package.

We downloaded the CryptoNetV1 from http://www.inetbio.org/cryptonet/ across all 14

data type specific networks, which contains 156,506 edges across 5,649 genes.

Embedding of the Co-Exp network

Using the R monocle3 package, we pre-processed the gene by study co-expression matrix by

PCA and then used UMAP to non-linearly reduce to 2 dimensions with parameters a = 30,

b = 0.8, and default parameters otherwise. To cluster, we used Louvain clustering with parame-

ters k = 30, num_iter = 15, resolution = 0.001. We then plotted the embedding coloring by

cluster using ggplot2. To assign functional annotations to each cluster we used GO term

enrichment through FungiDB, focusing on the biological process information.

Retrospective function AUROC calculations

13,920 Functional annotations for C. neoformans were downloaded from FungiDB release 49

and mapped to GO ontology terms using the GO.db R package gathered on 8/19/2021. Anno-

tations with the NOT qualifier were excluded, and the remaining annotations were propagated

along ‘isa’ and ‘part of’ relationships in the GO ontology, yielding 23,863 annotations. Then, to

facilitate guilt-by-association gene function prediction, terms with more than 1000 or less than

20 annotations were excluded, yielding 14,215 annotations across 3,421 open reading frames

for 145 terms with an average of 4.6 annotations per open reading frame and 98 annotations

per go_id.

Co-expression of S. cerevisiae Complexes analysis

616 S. cerevisiae complexes were downloaded from EBI Complex Portal (v2021-10-13) [98].

Members with identifiers that began with ‘URS-’ (RNA from rnacentral.org id), ‘EBI-’

(mRNA), ‘CHEBI-’ (small molecule), ‘CPX-’ (other complex) or ‘P12294’ (mitochondrially

encoded), yielding 1,948 proteins from S. cerevisiae strain S288C (vR64-2-1) that were mapped

to genes in the Saccharomyces Genome Database [99] using UniProtKB [100]. Of these genes,

1,093 mapped 1-to-1 to C. neoformans genes via uniport accession to gene identifier and

OrthoMCL (v6.7) [101] based orthology with an additional 211 genes via BlastP based orthol-

ogy, yielding 1,304 C. neoformans genes predicted to participate in 558 complexes (S3 Table).

Among the C. neoformans orthologs in these complexes, there are 13,950 distinct co-complex

associations. 51% C. neoformans co-complex associations are within 17 complexes with �¿‰ribo-

somal�¿‰or �¿‰ribonucleoprotein�¿‰in their name.

Orthology with S. cerevisiae
Pairwise sequence-based orthology using BlastP was defined by reciprocal best hits and having

E-values less than 1e-5 in both directions yielding 2,248 associations. Ortholog based on

sequence-based clustering using OrthoMCL release 6.7 was defined by orthogroups containing

exactly one member from C. neoformans and one from S. cerevisiae, yielding 2,274

associations.
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Co-evolution coefficient determination

To identify gene pairs with signatures of co-evolution, which refers to the covariation of the

relative evolutionary rates in two genes across speciation events [102], we used the Covarying

Evolutionary Rates (CovER) function in PhyKIT, v1.11.10 [103]. This analysis requires phylo-

genetic trees of single-copy orthologs from a panel of species. To generate this data, 15

genomes from Cryptococcus and the sister genus Kwoniella were obtained from NCBI, which

spans all publicly available annotated genomes at the time of downloading (07/2022). Orthol-

ogy was inferred using OrthoFinder, v2.3.8 [104], an algorithm that conducts graph-based

clustering of global sequence similarity values calculated using DIAMOND, v2.0.13.151 [105].

Orthology was inferred among protein sequences using an inflation value of 1.8 resulting in

3,828 single-copy orthologs.

To obtain additional groups of orthologous genes for coevolutionary coefficient determina-

tion, the OrthoSNAP pipeline, which identifies single-copy orthologs nested within larger

gene families [106], was used. To do so, phylogenetic trees were inferred from protein

sequences of multi-copy orthogroups with at least eight taxa using IQ-TREE, v2.0.6 [107], with

1,000 ultrafast bootstrap approximations [108]; multi-copy orthogroups were first aligned

using MAFFT, v7.402 [109], with the auto parameter, and trimmed using ClipKIT, v1.3.0

[110], with default parameters. The resulting phylogenies were used as input into OrthoSNAP,

v1.0.0, which resulted in 1,630 additional single-copy orthologs (5,458 total single-copy

orthologs).

The resulting single-copy orthologs were concatenated into a supermatrix using the �¿‰cre-

ate_concat�¿‰function in PhyKIT, v1.11.10 [103] and used for species tree estimation using

IQ-TREE 2 (best fitting substitution model: JTT+F+I+G4). For each single-copy ortholog,

branch lengths were inferred along the species tree using IQ-TREE 2. For every pairwise com-

bination, the coevolutionary coefficient was calculated using the "cover�¿‰function in PhyKIT,

v1.11.10 [103]. In brief, PhyKIT identifies pairs of coevolving genes by first accounting for

confounding variables like time since divergence and mutation rate by correcting single-copy

ortholog branch lengths with the corresponding branch length in the species tree; the resulting

values are Z-transformed and used for Pearson correlation analysis, representing a quantitative

measure of gene-gene coevolution.

Paralog identification

Orthology information from the previous section was used to determine pairs of paralogs.

6,641 ortholog groups were mapped over 6,975 C. neoformans genes. Among these groups, we

identified 1,056 paralog associations across 550 genes.

Strain construction

The following C. neoformans strains were generated by mating crosses which consisted of co-

culturing strains of opposite mating type on MS medium for 7-days [111]. Recombinant prog-

eny were isolated from the mating mixture by random spore dissection and analyzed for geno-

type, phenotype, and fluorescence. A mating cross between MATa cdc42Δ::nat (ERB010) and a

MATα wild type strain expressing GFP-tagged alpha tubulin (TUB1a; CBN242) generated

cdc42Δ::nat + GFP-TUB1a (CBN587). Similarly, a mating cross between MATa cdc420Δ::neo
(ERB007) and CBN242 generated cdc420Δ::neo + GFP-TUB1a (CBN589). Mating crosses of

strains ERB010 and ERB007 with a MATα wild type strain expressing a GFP-tagged Histone

H4 (CNV108) generated cdc42Δ::nat + GFP-H4 (CBN594) and cdc420Δ::neo + GFP-H4
(CBN593).
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Nocodazole sensitivity assay

To test sensitivity, each strain was 2-fold serially diluted and 5 μL spots of each dilution were

plated onto YPD with or without the indicated concentration of nocodazole. Plates were incu-

bated for 3 days before imaging.

Histone / tubulin localization assay

The following strains were incubated to mid-logarithmic phase with shaking (200 rpm) in

YPD medium at either 30�¿‰Cor 37�¿‰C,with or without the addition of 0.125 μM nocodazole:

strains CNV108 (WT + GFP-Histone H4), CBN242 (WT + GFP- Tub1), CBN593(cdc420Δ
+ GFP-Histone H4), and CBN589 (cdc420Δ + GFP- Tub1). Nuclear size and division (noted

by GFP-H4) and tubulin filaments (GFP-Tub1) were assessed using a Zeiss Axio Imager A1

microscope equipped with an Axio-Cam MRmdigital camera. Cells were imaged by DIC and

with eGFP filter. Identical exposure times were used to image all cells. Fiji software [112] was

used to process images.

Capsule assay

Capsule assays were performed as previously described [54]. Briefly, cells were inoculated into

DMEM (Gibco 11995) in 12-well plates and incubated at 37�¿‰Cwith 5% CO2 for 3 days before

staining with India ink (Fisher Scientific) and imaging on a Lionheart FX using brightfield

microscopy. Images are representative of three biological replicates.

Fluconazole sensitivity assay

To test sensitivity, each strain was serially diluted and 5 μL spots of each dilution were plated

onto YPD with or without the indicated concentration of fluconazole. Plates were incubated

for 3 days before imaging.

DNA damage response assay

EMS and UV mutagenesis assays were based on the protocol described by Winston [113].

Overnight cultures of C. neoformans were normalized to an OD600 of 1. Cultures were then

centrifuged in 1 mL aliquots and washed and resuspended in 0.1 M sodium phosphate buffer

(pH 7.4) to remove excess YPD. For EMS mutagenesis, cells were then transferred to 15 mL

conical tubes where either 5% ethyl methanesulfonate or sodium phosphate buffer was added.

Dose of EMS was chosen after dose-response assays (S5 Fig). Final volume in each tube was

adjusted to 2 mL and cells were incubated at 30�¿‰Cfor 1 hour while shaking. After incubation,

all samples were pelleted and washed with a 5% sodium thiosulfate solution to inactivate the

EMS. Following this wash, cells pellets were resuspended in 1 mL of sterile water and diluted

10-fold. 5 μL of each dilution were spotted onto YPD plates and incubated for 48 hours before

imaging. For UV mutagenesis, mock-treated samples were spotted onto YPD, but exposed to

200 μJ of UV radiation using a UV-Stratalinker before incubation at 30�¿‰Cfor 2 days before

imaging on a BioRad gel dock.

Supporting information

S1 Fig. Retrospective predictive accuracy of CryptoCEN. A. A re-embedded gene by expres-

sion matrix, scanning the key embedding parameters umap_a and umap_b over the ranges

[20, 30, 40, 50, 60] and [0.45, 0.5, 0.55], respectively, while keeping the remaining parameters

fixed (prereduction of dimension to 500 using PCA, n_neighbors = 30, negative_sample_-

rate = 50, umap_repulsion_strength = 3, n_epochs = 2000). Rows are umap_a and the columns
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are umap_b. The points are clustered using leiden clustering using with a resolution parameter

of 1e-3 and points are colored by the cluster index. B. UpSet plot of the retrospective predic-

tion accuracy, as determined by the neighbor voting guilt-by-association (GBA) area under

the ROC curve (AUROC). AUROCs values range between 0.5 for random predictor and 1 for

a perfect predictor. As data sources are combined, the prediction accuracy increases. Each

annotated GO term is colored by ontology biological process (BP), cellular component (CC),

or molecular function (MF). C. Enrichment of co-expression in the gene by expression matrix

UMAP. For each cluster, we selected inter and intra-cluster associations. We then computed

the area under the receiver operator characteristic (AUROC) for the enrichment of the intra-

cluster associations over the inter-cluster associations based on the co-expression score.

Enrichment within each cluster is indicated by color.

(TIF)

S2 Fig. Evolutionary constraints on co-expression. A) Phylogeny used for co-evolution.

Tips indicate each species, scale bar indicates 0.05 substitutions/site. B) Co-expression vs.

co-evolution scores over the 5,264 overlapping gene sets does not show a positive correlation

(correlation coefficient is -0.001). C) There is no difference in histone localization between

the strains. Histones were marked by fusion of H4 with GFP. Cells were incubated in liquid

YPD at 30�¿‰Cbefore imaging. Images taken at 40X magnification, scale = 5 microns. D)

There is no difference in nocodazole sensitivity between the cdc42Δ or cdc420Δ mutant

strains. The indicated strains were grown overnight at 30�¿‰Cin liquid YPD medium and then

serially diluted onto YPD or plates containing 0.3 μM nocodazole and incubated for 2 days

before imaging.

(TIF)

S3 Fig. Matched controls do not show enrichment for DNA repair. A) Analysis of matched

controls for phenotypes on DNA damaging agents. The indicated strains were grown over-

night at 30�¿‰Cin liquid YPD medium, and the 10-fold serially diluted cells were spotted onto

YPD agar. For UV damage, the plates were immediately subjected to 200 μJ UV. For EMS, the

cells were incubated in 5% EMS for 1 hr before serial dilution and plating. The plates were

incubated at 30�¿‰Cand imaged after 2 days.

(TIF)

S4 Fig. Mapping C. neoformans RNAseq runs. A. A total of 1,523 RNAseq runs from 34 iden-

tified studies are scatter-plotted as the number of genes with nonzero expression versus the

fraction transcripts that map exactly once. B. The RNAseq runs that have nonzero expression

for at least half of the genes which are used to construct the CryptoCEN network.

(TIF)

S5 Fig. Establishing concentrations for EMS treatment. A) H99 wild type cells were incu-

bated with the indicated concentrations of EMS for 1 hr before serial dilution and plating onto

YPD. The plates were incubated at 30�¿‰Cand imaged after 2 days. CFU/mL was calculated

from the serial dilutions.

(TIF)

S1 Table. Studies included in CryptoCEN. Tab 1) RNAseq studies. Tab 2) RNASeq runs.

(XLSX)

S2 Table. Co-Expression scores.

(XLSX)
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S3 Table. cluster analysis.

(XLSX)

S4 Table. Saccharomyces complexes. Tab 1) summary. Tab 2) pairwise.

(XLSX)

S5 Table. orthogroups.

(XLSX)

S6 Table. case studies. Tab 1) capsule co-expression values. Tab 2) ergosterol co-expression

values.

(XLSX)

S7 Table. DNA damage. Tab 1) co-expression. Tab 2) phenotype summary. Tab 3) reciprocal

co-expression.

(XLSX)
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