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CHAPTER 1 

Introduction 

Billions of base pairs: deep sequencing of the fungal kingdom 

Sequencing of nucleotide molecules has advanced diverse biology disciplines including 

evolutionary biology (Rokas and Abbot, 2009; Houldcroft et al., 2017; Manolio et al., 2021). In 

particular, genome sequencing has shed light on grand challenges in the field of evolutionary 

biology such as the genetic underpinnings of aging, human population history, and the tempo and 

mode of evolution across diverse lineages (An integrated map of genetic variation from 1,092 

human genomes, 2012; Jarvis et al., 2014; Feng et al., 2017; Shen et al., 2018; Choin et al., 2021; 

Kolora et al., 2021; Li et al., 2021).  

 

Among eukaryotic lineages, nuclear genomes of species from the Kingdom Fungi, an ancient 

and diverse lineage estimated to contain approximately 2-5 million species (Blackwell, 2011; 

Hawksworth and Lücking, 2017), were among the first to be sequenced. In fact, Saccharomyces 

cerevisiae, the model baker’s or brewer’s yeast, was the first eukaryotic nuclear genome to be 

sequenced (Goffeau et al., 1996). As of January 7th, 2022, nearly 10,000 fungal genomes are 

available (https://www.ncbi.nlm.nih.gov/). These rich genomic resources have enabled 

researchers to shed light on the dynamics of genome evolution in numerous fungal lineages such 

as species of yeast, filamentous fungi, mycorrhizal fungi, mushroom-forming fungi, and others 

as well as within species, such as S. cerevisiae and Schizosaccharomyces pombe (Nagy et al., 

2014; Jeffares et al., 2015a; Gallone et al., 2016; Nagy et al., 2016; Jeffares et al., 2017; Peter et 

al., 2018; Shen et al., 2018; Kjærbølling et al., 2020; Mead et al., 2020; Miyauchi et al., 2020). 

https://www.ncbi.nlm.nih.gov/
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Among other findings, these studies have underscored the importance of evolution by gene 

duplication, loss, and retention, horizontal gene transfer, and hybridization/introgression.  

 

Fungi, champions of ecological and genomic diversity 

Notwithstanding these discoveries, the fungal kingdom remains largely unexplored and 

numerous outstanding questions remain unresolved. For example, one major branch of research 

aims to determine what makes some fungi pathogenic whereas others are harmless or even 

beneficial to human welfare (Fedorova et al., 2008; Butler et al., 2009; Moran et al., 2011; Shang 

et al., 2016; Rokas et al., 2020a; Singh-Babak et al., 2021). The spectrum of pathogenic-to-

beneficial-to-human-welfare observed in fungi is particularly striking among the sister genera 

Aspergillus and Penicillium fungi wherein some species are major pathogens of humans (e.g., 

Aspergillus fumigatus, Aspergillus flavus) or of plants (e.g., Penicillium digitatum, Penicillium 

citrinum) whereas other are used in the production of fermented foods (e.g., Aspergillus oryzae, 

Aspergillus sojae, Penicillium roqueforti, Penicillium nalgiovense) or diverse biomolecules (e.g., 

Aspergillus niger, Aspergillus nidulans, Penicillium decumbens) (Houbraken and Samson, 2011; 

Houbraken et al., 2014; Samson et al., 2014; Visagie et al., 2014; Tsang et al., 2018; Steenwyk et 

al., 2019c; Rokas et al., 2020a). As a result, fungi from these lineages serve as valuable models 

to study the evolution of diverse fungal lifestyles that have equally diverse impact on humans. 

 

The diversity of fungal lifestyles, even among closely related species, is in part caused by the 

rapid tempo of evolution among fungi (Fedorova et al., 2008; Shen et al., 2018, 2020b). 

Determining what causes variation in evolutionary rates can shed light on important topics such 

as pathogen microevolution, which can contribute to the emergence of antibiotic resistance and 
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recurrent pathogen infection (Davies and Davies, 2010; Billmyre et al., 2017; Rhodes et al., 

2017a; Steenwyk, 2021a), as well as the domestication of fungi (Gibbons and Rinker, 2015; 

Gallone et al., 2016; Bodinaku et al., 2019). For example, the fungal pathogen Candida glabrata 

has a diminished response to DNA damage compared to S. cerevisiae, which is thought to 

contribute to antifungal resistance (Shor et al., 2020), an important component of pathogenicity. 

Hybridization, the genetic crossing of distinct lineages, can also be a rapid driver of evolution 

among fungal pathogens (Neafsey et al., 2010; Stukenbrock, 2016; Mixão and Gabaldón, 2020). 

Signatures of rapid evolution can also be observed within populations of a single species. For 

example, studies investigating copy number variants (duplicated or deleted loci in a population) 

have revealed a mutation rate 100-1,000 times that of single nucleotide polymorphisms (Zhang et 

al., 2009; Sener, 2014; Steenwyk and Rokas, 2018). A comprehensive map of copy number 

variants in populations can shed light on their evolutionary dynamics and reveal regions of the 

genome that are more (or less) likely to harbor this type of variation. In summary, studies 

investigating the drivers of rapid mutation as well as their mutational landscape across the 

genome will shed light on diverse aspects of fungal biology including pathogenesis, 

domestication, and, more broadly, fungal ecology. 

 

Bioinformatics, a young field with growing pains 

The aforementioned studies have relied on an unprecedented amount of genomic data. To keep 

pace with data generation, technical and methodological advances—which often require 

interdisciplinary teams of software engineers, biologists, and others—occurred concomitantly 

(Muir et al., 2016). For example, numerous software generate and assess the quality and 

completeness of genome assemblies and gene annotations, a key first step for many studies 
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(Stanke and Waack, 2003; Korf, 2004; Holt and Yandell, 2011; Bankevich et al., 2012; Gurevich 

et al., 2013; Waterhouse et al., 2018a). Other software aims to make use of genomes and gene 

annotations by conducting ortholog identification, multiple sequence alignment and alignment 

trimming, or reconstructing the evolutionary histories of nucleotide and amino acid sequences. 

The output files from these pieces of software can be used to infer diverse kinds of evolutionary 

events such as evolutionary radiations of species lineages and positive selection of individual 

codons in a gene’s coding region (Lanyon, 1988; Phillips and Penny, 2003; Yang, 2007; Capella-

Gutierrez et al., 2009; Katoh and Standley, 2013; Salichos and Rokas, 2013; Stamatakis, 2014a; 

Struck, 2014; Liu et al., 2017; Waterhouse et al., 2018a; Zhang et al., 2018; Emms and Kelly, 

2019; Minh et al., 2020).  

 

As described above, the output files from one software are often the input files for another 

resulting in bioinformatic workflows that rely on numerous pieces of software, custom scripts, 

and manual examination or processing of input/output files. This can lead to complex and 

difficult-to-maintain bioinformatic pipelines that threaten scientific reproducibility (Mangul et 

al., 2019a, 2019b). Case in point, a recent study found that approximately 28% of bioinformatic 

software are no longer supported by developers and fail to install due to implementation errors 

(Mangul et al., 2019b). A non-exhaustive list of reasons contributing to this issue may include: 

that the academe rewards publications more than maintenance of the tools that led to these 

publications; trainees who lead the project may move onto different jobs or fields; and 

inadequate training for biologists. Although some issues may only be resolved on a case-by-case 

basis, there are some principles that can be implemented by software engineers to help ensure 

long-term software stability. For example, developers can utilize integration and unit testing 
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coupled to continuous integration pipelines, an often overlooked component of software 

development that automatically tests building, packaging, installation, and faithful functionality 

of the software.  

 

Another outstanding issue is that analyses may require a combination of web-server applications, 

scripts available through repositories and supplemental materials, standalone software, and/or 

extensive programming in diverse languages. As a result, bioinformatic pipelines are not only 

difficult to maintain, but their accessibility to the scientific community is stymied. One approach 

to addressing this issue is to develop unified toolkits, software that conduct diverse analyses. 

However, engineering and developing unified toolkits often require large collaborations (or even 

consortiums) resulting in software that is difficult to coordinate, maintain, and deploy. In 

summary, despite methodologic advances, there are still numerous areas ripe for improvement in 

the field of bioinformatics. 

 

Insights into fungal genome evolution and new software for the life sciences 

In this thesis, I describe work that aims to address these shortcomings: elucidating the 

evolutionary dynamics of fungal genomes (chapters one through seven) and methods/software 

development to enable scientific discovery (chapters eight through 14). Studies of fungal genome 

evolution focus primarily on medically and technologically relevant fungi (e.g., pathogens and 

wine-associated yeast). Software described herein focus primarily on methods for evolutionary 

genomic studies. 
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In chapters two through nine, I describe dynamics of fungal genome evolution across and within 

species from the phylum Ascomycota, a diverse phylum with at least 83,000 known species 

(James et al., 2020; Shen et al., 2020b). In chapter two, I describe a robust workflow for 

investigating the evolutionary relationships among fungi, a prerequisite for understanding 

genome evolution, using species from the biomedically and technologically significant 

Aspergillus and Penicillium genera (Steenwyk et al., 2019c). In chapters three and four, I 

highlight how evolutionary-guided approaches, which leverage workflows and findings from 

chapter two, can be used to shed light on the evolutionary makings of a fungal pathogen 

(Steenwyk et al., 2020d; Mead et al., 2021). To briefly foreshadow their findings, these two 

chapters are surprising in that numerous genetic determinants of virulence are found in 

nonpathogenic fungi, which raises an important question—“what makes a fungal pathogen?” In 

chapter five, I highlight an international genome sequencing and phenotyping effort to 

characterize coronavirus disease 2019 (COVID-19) associated pulmonary isolates of A. 

fumigatus and raise awareness of the clinical importance of superinfections (Steenwyk et al., 

2021d). 

 

In chapters six through nine, I describe rapid evolutionary processes among fungi. In chapter six, 

I discuss how copy number variants—duplicated and deleted loci in a population—can 

contribute to substantial variation in a population despite low genetic variation among single 

nucleotide polymorphisms (Steenwyk and Rokas, 2017). In chapters seven and eight, I discuss 

how losses of DNA repair and cell cycle genes, which collectively contribute to genome 

stability, can lead to punctuated sequence evolution (Steenwyk et al., 2019a; Phillips et al., 

2021). In chapter nine, I discuss how allodiploid hybridization—the combining of whole 
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genomes from distinct parental species—contributes to the evolution of a pathogenic fungus, 

Aspergillus latus (Steenwyk et al., 2020c). 

 

The remaining seven chapters are dedicated to software that facilitate the processing, analysis, or 

plotting of biological data, such as sequence and phylogenomic data. In chapters 10 and 11, I 

describe BioKIT and PhyKIT—two pieces of software that, among other things, can be used to 

assess the information content in multiple sequence alignments and phylogenetic trees as well as 

infer evolutionary events such as rapid radiations (Steenwyk et al., 2021a, 2021b). In chapter 12, 

I describe a novel approach to multiple sequence alignment trimming that focuses on retaining 

phylogenetically informative sites (Steenwyk et al., 2020b). In chapter 13, I describe 

orthoSNAP, a tree-splitting and pruning algorithm for retrieving single-copy orthologs from gene 

family trees, which can facilitate creating larger data matrices for molecular evolutionary studies 

(Steenwyk et al., 2021c). In chapter 14, I describe orthofisher, a toolkit for putative ortholog 

identification and retrieval, a common first step in many bioinformatic workflows (Steenwyk and 

Rokas, 2021b). In chapters 15 and 16, I describe relatively simple pieces of software that aim to 

increase the accessibility of scientific findings using two different approaches. In chapter 15, I 

describe treehouse, a graphical user-interface software that allows users to obtain subtrees from 

phylogenies, which enables researchers not familiar with phylogenetic software to quickly obtain 

the evolutionary relationships of their species of interest (Steenwyk and Rokas, 2019). In chapter 

16, I describe ggpubfigs, an R package with ggplot2 extensions (Wickham, 2009), that facilitate 

creating publication quality figures that are also colorblind friendly (Steenwyk and Rokas, 

2021a). 
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Thereafter, I discuss future avenues of research that may build upon these findings or software. 

A fair summary of this section is that there is an abundance of exciting research to be done and, 

to date, my humble contributions, enabled by a supportive network of collaborators, are minimal. 

Nonetheless, it is my sincere hope that the research described herein—which has been an 

immense honor and privilege to conduct—inspires, informs, and enables future biological 

research. 
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CHAPTER 2 

A robust phylogenomic timetree for biotechnologically and medically important fungi in 

the genera Aspergillus and Penicillium1 

 

Introduction 

The vast majority of the 1,062 described species from the family Aspergillaceae (phylum 

Ascomycota, class Eurotiomycetes, order Eurotiales) (Houbraken et al., 2014) belong to the 

genera Aspergillus (42.5%; 451 / 1,062) and Penicillium (51.6%; 549 / 1,062) (Benson et al., 

2007; Sayers et al., 2009). Fungi from Aspergillaceae exhibit diverse ecologies; for example, 

Penicillium verrucosum is widespread in cold climates but has yet to be isolated in the tropics 

(Pitt, 2002), whereas Aspergillus nidulans is able to grow at a wide range of temperatures but 

favors warmer ones (Ogundero, 1983). Several representative species in the family are exploited 

by humans, while a number of others are harmful to humans or their activities (Gibbons and 

Rokas, 2013). Examples of useful-to-humans organisms among Aspergillus species include 

Aspergillus oryzae, which is used in the production of traditional Japanese foods including soy 

sauce, sake, and vinegar (Machida et al. 2008; Gibbons et al. 2012) as well as of amylases and 

proteases (Kobayashi et al., 2007) and Aspergillus terreus, which produces mevinolin 

(lovastatin), the potent cholesterol-lowering drug (Albert et al., 1980). Examples of useful-to-

humans Penicillium species include Penicillium camemberti and Penicillium roqueforti, which 

contribute to cheese production (Nelson 1970; Lessard et al. 2012), and Penicillium citrinum,  

 

1This work is published in: Steenwyk, J. L., Shen, X.-X., Lind, A. L., Goldman, G. H., and 

Rokas, A. (2019). A Robust Phylogenomic Time Tree for Biotechnologically and Medically 

Important Fungi in the Genera Aspergillus and Penicillium. MBio 10. doi:10.1128/mBio.00925-

19. 
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which produces the cholesterol lowering drug mevastatin, the world’s first statin (Endo 2010). In 

contrast, examples of harmful-to-humans organisms include the pathogen, allergen, and 

mycotoxin-producing species Aspergillus fumigatus and Aspergillus flavus (Nierman et al., 2005; 

Hedayati et al., 2007) and the post-harvest pathogens of citrus fruits, stored grains, and other 

cereal crops Penicillium expansum, Penicillium digitatum, and Penicillium italicum (Marcet-

Houben et al., 2012; Ballester et al., 2015; Li et al., 2015).  

 

Much of the ubiquity, ecological diversity, and wide impact on human affairs that Aspergillaceae 

exhibit is reflected in their phenotypic diversity, including their extremotolerance (e.g., ability to 

withstand osmotic stress and wide temperature range) (Magan and Lacey, 1984; Marín et al., 

1998; Pitt and Hocking, 2009; Vinnere Pettersson and Leong, 2011) and ability to grown on 

various carbon sources (Pitt and Hocking, 2009; de Vries et al., 2017). Fungi from 

Aspergillaceae are also well known for their ability to produce a remarkable diversity of 

secondary metabolites, small molecules that function as toxins, signaling molecules, and 

pigments (Pitt, 1994; Keller et al., 2005; Frisvad and Larsen, 2015; Macheleidt et al., 2016; 

Rokas et al., 2018). Secondary metabolites likely play key roles in fungal ecology (Rohlfs et al., 

2007; Fox and Howlett, 2008; Stierle and Stierle, 2015), but these small molecules often have 

biological activities that are either harmful or beneficial to human welfare. For example, the A. 

fumigatus-produced secondary metabolite gliotoxin is a potent virulence factor in cases of 

systemic mycosis in vertebrates (Rohlfs and Churchill, 2011), and the A. flavus-produced 

secondary metabolite aflatoxin is among the most toxic and carcinogenic naturally occurring 

compounds (Squire, 1981; Keller et al., 2005). In contrast, other secondary metabolites are 

mainstay antibiotics and pharmaceuticals; for example, the Penicillium chrysogenum-produced 
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penicillin is among the world’s most widely used antibiotics (Chain et al., 1940; Fleming, 1980; 

Aminov, 2010) and the P. citrinum-produced cholesterol lowering statins are consistently among 

the world’s blockbuster drugs (Endo, 2010).  

 

Understanding the evolution of the diverse ecological lifestyles exhibited by Aspergillaceae 

members as well as the family’s remarkable chemodiversity requires a robust phylogenetic 

framework. To date, most molecular phylogenies of the family Aspergillaceae are derived from 

single or few genes and have yielded conflicting results. For example, it is debated whether the 

genus Aspergillus is monophyletic or if it includes species from other genera such as Penicillium 

(Pitt and Taylor, 2014; Samson et al., 2014). Furthermore, studies using genome-scale amounts 

of data, which could have the power to resolve evolutionary relationships and identify underlying 

causes of conflict (Rokas et al., 2003; Salichos and Rokas, 2013), have so far tended to use a 

small subset of fungi from either Aspergillus or Penicillium (de Vries et al., 2017; Nielsen et al., 

2017; Kjærbølling et al., 2018). Additionally, these genome-scale studies do not typically 

examine the robustness of the produced phylogeny; rather, based on the high clade support 

values (e.g., bootstrap values) obtained, these studies infer that the topology obtained is highly 

accurate (Yang et al., 2016; de Vries et al., 2017; Nielsen et al., 2017; Kjærbølling et al., 2018). 

 

In recent years, several phylogenomic analyses have shown that high clade support values can be 

misleading (Phillips et al., 2004; Kumar et al., 2012; Salichos and Rokas, 2013), that 

incongruence, the presence of topological conflict between different data sets or analyses, is 

widespread (Hess and Goldman, 2011; Song et al., 2012; Salichos and Rokas, 2013; Zhong et al., 

2013), and that certain branches of the tree of life can be very challenging to resolve, even with 
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genome-scale amounts of data (Shen et al. 2016; Suh 2016; Arcila et al. 2017; King and Rokas 

2017; Shen et al. 2017). Comparison of the topologies inferred in previous phylogenomic studies 

in Aspergillaceae (Yang et al., 2016; de Vries et al., 2017; Nielsen et al., 2017; Kjærbølling et 

al., 2018) suggests the presence of incongruence (Figure S1 from Steenwyk et al., 2019c). For 

example, some studies have reported section Nidulantes to be the sister group to section Nigri 

(de Vries et al., 2017), whereas other studies have placed it as the sister group to Ochraceorosei 

(Kjærbølling et al., 2018) (Figure S1 from Steenwyk et al., 2019c). 

 

A robust phylogeny of Aspergillaceae is also key to establishing a robust taxonomic 

nomenclature for the family. In recent years, the taxonomy of Aspergillus and Penicillium has 

been a point of contention due to two key differences among inferred topologies based on 

analyses of a few genes (Kocsubé et al., 2016; Taylor et al., 2016). The first key difference 

concerns the placement of the genus Penicillium. One set of analyses places the genus as a sister 

group to Aspergillus section Nidulantes, which would imply that Penicillium is a section within 

the genus Aspergillus (Taylor et al., 2016), whereas a different set of analyses suggests that the 

genera Penicillium and Aspergillus are reciprocally monophyletic (Kocsubé et al., 2016). The 

second key difference concerns whether sections Nigri, Ochraceorosei, Flavi, Circumdati, 

Candidi, and Terrei, which are collectively referred to as “narrow Aspergillus”, form a 

monophyletic group (Taylor et al., 2016) or not (Kocsubé et al., 2016). Both of these differences 

are based on analyses of a few genes (4 loci, Taylor et al. 2016 and 9 loci, Kocsubé et al. 2016) 

and the resulting phylogenies typically exhibit low support values for deep internodes, including 

for the ones relevant to this debate.  
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To shed light on relationships among these fungi, we employed a genome-scale approach to infer 

the evolutionary history among Aspergillus, Penicillium, and other fungal genera from the family 

Aspergillaceae. More specifically, we used the genome sequences of 81 fungi from 

Aspergillaceae spanning 5 genera, 25 sections within Aspergillus and Penicillium, and 12 

outgroup fungi to construct nucleotide (NT) and amino acid (AA) versions of a data matrix 

comprised of 1,668 orthologous genes. Using three different maximum likelihood schemes (i.e., 

gene-partitioned, unpartitioned, and coalescence), we inferred phylogenies from the 1,668-gene 

data matrix as well as from five additional 834-gene data matrices derived from the top 50% of 

genes harboring strong phylogenetic signal according to five different criteria (alignment length, 

average bootstrap value, taxon completeness, treeness / relative composition variability, and 

number of variable sites). Using the same schemes, we also inferred phylogenies of the 1,668-

gene data matrix using different alignment trimming methods as well as of a reduced 1,331-gene 

data matrix that was filtered for potential hidden paralogs. Comparisons of these phylogenies 

coupled with complementary measures of internode certainty (Salichos and Rokas, 2013; 

Salichos et al., 2014; Kobert et al., 2016) identified 14 / 78 (17.9%) incongruent bipartitions in 

the phylogeny of Aspergillaceae. These cases of incongruence can be grouped into three 

categories: (i) 2 shallow bipartitions with low levels of incongruence likely driven by incomplete 

lineage sorting, (ii) 4 shallow bipartitions with high levels of incongruence likely driven by 

hybridization or introgression (or very high levels of incomplete lineage sorting), and (iii) 8 

deeper bipartitions with varying levels of incongruence likely driven by reconstruction artifacts 

likely linked with poor taxon sampling. We also estimated divergence times across 

Aspergillaceae using relaxed molecular clock analyses. Our results suggest Aspergillaceae 

originated in the lower Cretaceous, 117.4 (95% Credible Interval (CI): 141.5 - 96.9) million 
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years ago (mya), and that Aspergillus and Penicillium originated 81.7 mya (95% CI: 87.5 - 72.9) 

and 73.6 mya (95% CI: 84.8 - 60.7), respectively. We believe this phylogeny and timetree are 

highly informative with respect to the ongoing debate on Aspergillus systematics and taxonomy, 

and provide a state-of-the-art platform for comparative genomic, ecological, and chemodiversity 

studies in this ecologically diverse and biotechnologically and medically significant family of 

filamentous fungi. 

 

Materials and Methods 

Genome sequencing and assembly. 

Mycelia were grown on potato dextrose agar for 72 hours before lyophilization. Lyophilized 

mycelia were lysed by grinding in liquid nitrogen and suspension in extraction buffer (100 mM 

Tris-HCl pH 8, 250 mM NaCl, 50 mM EDTA, and 1% SDS). Genomic DNA was isolated from 

the lysate with a phenol/chloroform extraction followed by an ethanol precipitation. 

 

DNA was sequenced with both paired-end and mate-pair strategies to generate a high-quality 

genome assembly. Paired-end libraries and Mate-pair libraries were constructed at the Genomics 

Services Lab at HudsonAlpha (Huntsville, Alabama) and sequenced on an Illumina HiSeq X 

sequencer. Paired-end libraries were constructed with the Illumina TruSeq DNA kit, and mate-

pair libraries were constructed with the Illumina Nextera Mate Pair Library kit targeting an insert 

size of 4 Kb. In total, 63 million paired-end reads and 105 million mate-pair reads, each of which 

was 150 bp in length, were generated. 
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The A. spinulosporus genome was assembled using the iWGS pipeline (Zhou et al., 2016). 

Paired-end and mate-pair reads were assembled with SPADES, version 3.6.2 (Bankevich et al., 

2012), using optimal k-mer lengths chosen using KMERGENIE, version 1.6982 (Chikhi and 

Medvedev, 2014) and evaluated with QUAST, version 3.2 (Gurevich et al., 2013). The resulting 

assembly is 33.8 MB in size with an N50 of 939 Kb. 

 

Data collection and quality assessment. 

To collect a comprehensive set of genomes representative of Aspergillaceae, we used 

“Aspergillaceae” as a search term in NCBI’s Taxonomy Browser and downloaded a 

representative genome from every species that had a sequenced genome as of February 5th 2018. 

We next confirmed that each species belonged to Aspergillaceae according to previous literature 

reports (Houbraken and Samson, 2011; de Vries et al., 2017). Altogether, 80 publicly available 

genomes and 1 newly sequenced genome spanning 5 genera (45 Aspergillus species; 33 

Penicillium species; one Xeromyces species; one Monascus species; and one Penicilliopsis 

species) from the family Aspergillaceae were collected (File S1 from Steenwyk et al., 2019c). 

We also retrieved an additional 12 fungal genomes from representative species in the order 

Eurotiales but outside the family Aspergillaceae to use as outgroups.  

 

To determine if the genomes contained gene sets of sufficient quality for use in phylogenomic 

analyses, we examined their gene set completeness using Benchmarking Universal Single-Copy 

Orthologs (BUSCO), version 2.0.1 (Waterhouse et al., 2018a) (Figure S2 from Steenwyk et al., 

2019c). In brief, BUSCO uses a consensus sequence built from hidden Markov models derived 

from 50 different fungal species using HMMER, version 3.1b2 (Eddy, 2011) as a query in 
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TBLASTN (Camacho et al., 2009; Madden, 2013) to search an individual genome for 3,156 

predefined orthologs (referred to as BUSCO genes) from the Pezizomycotina database (creation 

date: 02-13-2016) available from ORTHODB, version 9 (Waterhouse et al., 2013). To determine 

the copy number and completeness of each BUSCO gene in a genome, gene structure is 

predicted using AUGUSTUS, version 2.5.5 (Stanke and Waack, 2003), with default parameters, 

from the nucleotide coordinates of putative genes identified using BLAST and then aligned to 

the HMM alignment of the same BUSCO gene. Genes are considered “single copy” if there is 

only one complete predicted gene present in the genome, “duplicated” if there are two or more 

complete predicted genes for one BUSCO gene, “fragmented” if the predicted gene is shorter 

than 95% of the aligned sequence lengths from the 50 different fungal species, and “missing” if 

there is no predicted gene. 

 

Phylogenomic data matrix construction. 

In addition to their utility as a measure of genome completeness, BUSCO genes have also proven 

to be useful markers for phylogenomic inference (Waterhouse et al., 2018a), and have been 

successfully used in phylogenomic studies of clades spanning the tree of life, such as insects 

(Ioannidis et al., 2017) and budding yeasts (Shen et al. 2016). To infer evolutionary 

relationships, we constructed nucleotide (NT) and amino acid (AA) versions of a data matrix 

comprised of the aligned and trimmed sequences of numerous BUSCO genes (Figure S3 from 

Steenwyk et al., 2019c). To construct this data matrix, we first used the BUSCO output summary 

files to identify orthologous single copy BUSCO genes with > 50% taxon-occupancy (i.e., 

greater than 47 / 93 taxa have the BUSCO gene present in their genome); 3,138 (99.4%) BUSCO 

genes met this criterion. For each BUSCO gene, we next created individual AA fasta files by 
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combining sequences across all taxa that have the BUSCO gene present. For each gene 

individually, we aligned the sequences in the AA fasta file using MAFFT, version 7.294b (Katoh 

and Standley, 2013), with the BLOSUM62 matrix of substitutions (Mount, 2008), a gap penalty 

of 1.0, 1,000 maximum iterations, and the “genafpair” parameter. To create a codon-based 

alignment, we used a custom PYTHON, version 3.5.2 (https://www.python.org/), script using 

BIOPYTHON, version 1.7 (Cock et al., 2009a), to thread codons onto the AA alignment. The NT 

and AA sequences were then individually trimmed using TRIMAL, version 1.4 (Capella-Gutierrez 

et al., 2009), with the “automated1” parameter. To remove potentially spuriously aligned 

sequences, we removed BUSCO genes whose sequence lengths were less than 50% of the 

untrimmed length in either the NT or AA sequences resulting in 1,773 (56.2%) BUSCO genes. 

Lastly, we removed BUSCO genes whose trimmed sequence lengths were too short (defined as 

genes whose alignment length was less than or equal to 167 AAs and 501 NTs), resulting in 

1,668 (52.9%) BUSCO genes. The NT and AA alignments of these 1,668 BUSCO genes were 

then concatenated into the full 1,668-gene NT and AA versions of the phylogenomic data matrix.  

 

To examine the stability of inferred relationships across all taxa, we constructed additional NT 

and AA data matrices by subsampling genes from the 1,668-gene data matrix that harbor 

signatures of strong phylogenetic signal. More specifically, we used 5 measures associated with 

strong phylogenetic signal (Shen et al. 2016) to create 5 additional data matrices (1 data matrix 

per measure) comprised of the top scoring 834 (50%) genes for NTs and AAs (Figure S4 from 

Steenwyk et al., 2019c). These five measures were: alignment length, average bootstrap value, 

taxon completeness, treeness / relative composition variability (RCV) (Phillips and Penny, 
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2003), and the number of variable sites. We calculated each measure with custom PYTHON 

scripts using BIOPYTHON. Treeness / RCV was calculated using the following formula: 

𝑇𝑟𝑒𝑒𝑛𝑒𝑠𝑠

𝑅𝐶𝑉
=

∑ 𝑙𝑢
𝑏
𝑢=1

𝑙𝑡
⁄

∑ ∑
|𝑐𝑖𝑗 − 𝑐�̅�|

𝑠 • 𝑛
𝑛
𝑗=1

𝑐
𝑖=1

 

 

where lu refers to the internal branch length of the uth branch (of b internal branches), lt refers to 

total tree length, c is the number of different characters per sequence type (4 for nucleotides and 

20 for amino acids), n is the number of taxa in the alignment, cij refers to the number of ith c 

characters for the jth taxon, 𝑐�̅� refers to the average number of the ith c character across n taxa, 

and s refers to the total number of sites in the alignment. Altogether, we constructed a total of 12 

data matrices (one 1,668-gene NT data matrix, one 1,668-gene AA data matrix, five NT 

subsample data matrices, and five AA subsample data matrices).  

 

Maximum likelihood phylogenetic analyses. 

We implemented a maximum likelihood framework to infer evolutionary relationships among 

taxa for each of the 1,668 single genes and each of the 12 data matrices separately. For 

inferences made using either the 1,668- or 834-gene data matrices, we used three different 

analytical schemes: concatenation with gene-based partitioning, concatenation without 

partitioning, and gene-based coalescence (Felsenstein, 1981; Rokas et al., 2003; Edwards, 2009; 

Mirarab and Warnow, 2015). All phylogenetic trees were built using IQ-TREE, version 1.6.1 

(Nguyen et al., 2015). In each case, we determined the best model for each single gene or 

partition using the “-m TEST” and “-mset raxml” parameters, which automatically estimate the 

best fitting model of substitutions according to their Bayesian Information Criterion values for 
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either NTs or AAs (Kalyaanamoorthy et al., 2017) for those models shared by RAXML 

(Stamatakis, 2014a) and IQ-TREE.  

 

We first examined the inferred best fitting models across all single gene trees. Among NT genes, 

the best fitting model for 1,643 genes was a general time reversible model with unequal rates and 

unequal base frequencies with discrete gamma models, “GTR+G4” (Tavaré, 1986; Yang, 1994, 

1996), and for the remaining 25 genes was a general time reversible model with invariable sites 

plus discrete gamma models, “GTR+I+G4” (Tavaré, 1986; Vinet and Zhedanov, 2011) (Figure 

S5a from Steenwyk et al., 2019c). Among AA genes, the best fitting model for 643 genes was 

the JTT model with invariable sites plus discrete gamma models, “JTT+I+G4” (Jones et al., 

1992; Vinet and Zhedanov, 2011), for 362 genes was the LG model with invariable sites and 

discrete gamma models, “LG+I+G4” (Le and Gascuel, 2008; Vinet and Zhedanov, 2011), for 

225 genes was the JTT model with invariable sites, empirical AA frequencies, and discrete 

gamma models “JTT+F+I+G4” (Jones et al., 1992; Vinet and Zhedanov, 2011), and for 153 

genes was the JTTDCMut model with invariable sites and discrete gamma models, 

“JTTDCMut+I+G4” (Kosiol and Goldman, 2005; Vinet and Zhedanov, 2011) (Figure S5b from 

Steenwyk et al., 2019c). We used IQ-TREE for downstream analysis because a recent study 

using diverse empirical phylogenomic data matrices showed that it is a top-performing software 

(Zhou et al., 2018). 

 

To reconstruct the phylogeny of Aspergillaceae using a partitioned scheme where each gene has 

its own model of sequence substitution and rate heterogeneity across sites parameters for any 

given data matrix, we created an additional input file describing these and gene boundary 
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parameters. More specifically, we created a nexus-format partition file that was used as input 

with the “-spp” parameter, which allows each gene partition in the data matrix to have its set of 

evolutionary rates (Chernomor et al., 2016). To increase the number of candidate trees used 

during maximum likelihood search, we changed the “-nbest” parameter from the default value of 

5 to 10. Lastly, we conducted 5 independent searches for the maximum likelihood topology 

using 5 distinct seeds specified with the “-seed” parameter and chose the search with the best 

log-likelihood score. We used the phylogeny inferred using a partitioned scheme on the full NT 

data matrix as the reference one for all subsequent comparisons (Figure 1). 

 

To infer the phylogeny of Aspergillaceae using a non-partitioned scheme, we used a single 

model of sequence substitution and rate heterogeneity across sites for the entire matrix. To save 

computation time, the most appropriate single model was determined by counting which best 

fitting model was most commonly observed across single gene trees. The most commonly 

observed model was “GTR+F+I+G4” (Waddell and Steel, 1997; Vinet and Zhedanov, 2011), 

which was favored in 1,643 / 1,668 (98.5%) of single genes, and “JTT+I+G4” (Jones et al., 

1992; Vinet and Zhedanov, 2011), which was favored in 643 / 1,668 (38.5%) of single genes, for 

NTs and AAs, respectively, (Figure S5 from Steenwyk et al., 2019c). In each analysis, the 

chosen model was specified using the “-m” parameter.  

 

To reconstruct the phylogeny of Aspergillaceae using coalescence, a method that estimates 

species phylogeny from single gene trees under the multi-species coalescent (Edwards, 2009), 

we combined all NEWICK (Felsenstein, 1986, 1996) formatted single gene trees inferred using 
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their best fitting models into a single file. The resulting file was used as input to ASTRAL-II, 

version 4.10.12 (Mirarab and Warnow, 2015) with default parameters.  

 

To evaluate support for single gene trees and for the reference phylogeny (Figure 1), we used the 

ultrafast bootstrap approximation approach (UFBoot) (Hoang et al., 2018), an accurate and faster 

alternative to the classic bootstrap approach. To implement UFBoot for the NT 1,668-gene data 

matrix and single gene trees, we used the “-bb” option in IQ-TREE with 5,000 and 2,000 

ultrafast bootstrap replicates, respectively.  

 

Evaluating topological support. 

To identify and quantify incongruence, we used two approaches. In the first approach, we 

compared the 36 topologies inferred from the full 1,668-gene NT and AA data matrices and five 

additional 834-gene data matrices (constructed by selecting the genes that have the highest 

scores in five measures previously shown to be associated with strong phylogenetic signal; see 

above) using three different maximum likelihood schemes (i.e., gene partitioned, non-

partitioned, coalescence) and identified all incongruent bipartitions between the reference 

phylogeny (Figure 1) and the other 35. In the second approach, we scrutinized each bipartition in 

the reference phylogeny using measures of internode certainty (IC) measures for complete and 

partial single gene trees (Salichos and Rokas, 2013; Salichos et al., 2014; Kobert et al., 2016). To 

better understand single gene support among conflicting bipartitions, we calculated gene-wise 

log-likelihood scores (GLS) (Shen et al., 2017) and gene support frequencies (GSF) for the 

reference and alternative topologies at conflicting bipartitions. 
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Figure 1. A robust genome-scale phylogeny for the fungal family Aspergillaceae. 

Different genera are depicted using different-colored boxes: Aspergillus is shown in 

red, Penicillium in blue, Xeromyces in green, Monascus in purple, and Penicilliopsis in orange. 

Different sections within Aspergillus and Penicillium are depicted with alternating dark gray and 

gray bars. Internode certainty values are shown below each internode, and bootstrap values are 

shown above each internode (only bootstrap values lower than 100% are shown). Internode 

certainty values were calculated using the 1,668 maximum likelihood single-gene trees. Five 

thousand ultrafast bootstrap replicates were used to determine internode support. Internodes were 

considered unresolved if they were not present in one or more of the other 35 phylogenies 

represented in Figure 2—the branches of these unresolved internodes are drawn in red. 

Additional incongruent internodes were identified using calculations of IC. The inset depicts the 

phylogeny with branch lengths corresponding to estimated nucleotide substitutions per site. 

Colored circles next to species names indicate the lifestyle or utility of the species (i.e., animal 

pathogen, dark orange; plant pathogen, purple; food fermenter, green; postharvest food 

contaminant, pink; industrial workhorse, gray; genetic model, black; other, white). Exemplary 

secondary metabolites produced by different Aspergillaceae species are written to the right of the 

colored circles. 

 

 

Identifying internodes with conflict across subsampled data matrices. 

To identify incongruent bipartitions between the reference phylogeny and the other 35 

phylogenies, we first included the 36 generated phylogenetic trees into a single file. We next 

evaluated the support of all bipartitions in the reference topology among the other 35 

phylogenies using the “-z” option in RAXML. Any bipartition in the reference phylogeny that 

was not present in the rest was considered incongruent; each conflicting bipartition was 

identified through manual examination of the conflicting phylogenies. To determine if sequence 

type, subsampling method, or maximum likelihood scheme was contributing to differences in 

observed topologies among conflicting internodes, we conducted multiple correspondence 

analysis of these features among the 36 phylogenies and visualized results using the R, version 

3.3.2 (R Development Core Team, 2008), packages FACTOMINER, version 1.40 (Lê et al., 2008) 

and FACTOEXTRA, version 1.0.5 (Kassambara and Mundt, 2017).  
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Identifying internodes with conflict across the 1,668 gene trees. 

To examine the presence and degree of support of conflicting bipartitions, we calculated the 

internode certainty (Salichos and Rokas, 2013; Salichos et al., 2014; Kobert et al., 2016; Zhou et 

al., 2017) of all internodes in the reference phylogeny (Figure 1) using the 1,668 gene trees as 

input. In general, IC scores near 0 indicate that there is near-equal support for an alternative, 

conflicting bipartition among a set of trees compared to a given bipartition present in the 

reference topology, which is indicative of high conflict. Therefore, we investigated incongruence 

in all internodes in the reference phylogeny (Figure 1) that exhibited IC scores lower than 0.1. To 

calculate IC values for each bipartition for the reference phylogeny, we created a file with all 

1,668 complete and partial single gene trees. The resulting file of gene trees, specified with the “-

z” parameter in RAXML, were used to calculate IC values using the “-f i” argument. The 

topology was specified with the “-t” parameter. Lastly, we used the Lossless corrected IC scoring 

scheme, which corrects for variation in taxon number across single gene trees (Kobert et al., 

2016). We also used these IC values to inform which data type (NT or AA) provided the 

strongest signal for the given set of taxa and sequences. We observed that NTs consistently 

exhibited higher IC scores than AAs (hence our decision to use the topology inferred from the 

full NT data matrix using a gene-partitioned scheme – shown in Figure 1 – as the “reference” 

topology in all downstream analyses). 

 

Examining gene-wise log-likelihood scores for incongruent internodes. 

To determine the per gene distribution of phylogenetic signal supporting a bipartition in the 

reference phylogeny or a conflicting bipartition, we calculated gene-wise log-likelihood scores 

(GLS) (Shen et al., 2017) using the NT data matrix. We chose to calculate GLS using the NT 
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data matrix because distributions of IC values from phylogenies inferred using NTs had 

consistently higher IC values across schemes and data matrices (Figure S6 from Steenwyk et al., 

2019c). To do so, we used functions available in IQ-TREE. More specifically, we inputted a 

phylogeny with the reference or alternative topology using the “-te” parameter and informed IQ-

TREE of gene boundaries, their corresponding models, and optimal rate heterogeneity 

parameters in the full 1,668-gene data matrix using the “-spp” parameter. Lastly, we specified 

that partition log-likelihoods be outputted using the “-wpl” parameter. To determine if a gene 

provided greater support for the reference or alternative bipartition, we calculated the difference 

in GLS (ΔGLS) using the following formula: 

 

ΔGLS𝑖 = ln 𝐿(𝐺𝑖)𝑟𝑒𝑓 − ln 𝐿(𝐺𝑖)𝑎𝑙𝑡 

where ln L(Gi)ref and ln L(Gi)alt represent the log-likelihood values for the reference and 

alternative topologies for gene Gi. Thus, values greater than 0 reflect genes in favor of the 

reference bipartition, values lower than 0 reflect genes in favor of the alternative bipartition, and 

values of 0 reflect equal support between the reference and alternative bipartitions. 

 

Calculating gene support frequencies for reference and conflicting bipartitions. 

We next examined support for bipartitions in the reference topology as well as for their most 

prevalent conflicting bipartitions by calculating their gene support frequencies (GSF). GSF refers 

to the fraction of single gene trees that recover a particular bipartition. Currently, RAXML can 

only calculate GSF for trees with full taxon representation. Since our dataset contained partial 

gene trees, we conducted customs tests for determining GSF. To calculate GSF for NT (GSFNT) 

and AA (GSFAA) single gene trees, we extracted subtrees for the taxa of interest in individual 
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single gene trees and counted the occurrence of various topologies. For example, consider there 

are three taxa represented as A, B, and C, the reference rooted topology is “((A,B),C);” and the 

alternative rooted topology is “((A,C),B);”. We counted how many single gene trees supported 

“(A,B),” or “(A, C),”. For reference and alternative topologies involving more than three taxa or 

sections, we conducted similar tests. For example, if the reference rooted topology is 

“(((A,B),C),D);” and the alternative rooted topology is “((A,B),(C,D));”, we counted how many 

single gene phylogenies supported “((A,B),C),” as sister to D and how many single gene 

phylogenies supported “(A,B),” and “(C,D),” as pairs of sister clades. For conflicting bipartitions 

at shallow depths in the phylogeny (i.e., among closely related species), we required all taxa to 

be present in a single gene tree; for conflicting bipartitions near the base of the phylogeny (i.e., 

typically involving multiple sections), we required at least one species to be present from each 

section of interest. Scripts to determine GSF were written using functions provided in NEWICK 

UTILITIES, version 1.6 (Junier and Zdobnov, 2010). 

 

Filtering potential hidden paralogs. 

Potential hidden paralogs among individual groups of orthologous genes can be identified by 

examining their ability to recover well established monophyletic clades (Rodríguez-Ezpeleta et 

al., 2007; Philippe et al., 2009; Salichos and Rokas, 2013). To filter genes containing potential 

hidden paralogs among the 1,668 NT orthologs, we removed single genes that did not recover six 

well established clades among Aspergillus and Penicillium species (Kocsubé et al., 2016; Yang 

et al., 2016; Nielsen et al., 2017; Kjærbølling et al., 2018). More specifically, we examined the 

1,668 NT gene trees for monophyly of three Aspergillus clades (1: Nigri, 2: Fumigati and 

Clavati, and 3: Aspergillus) and three Penicillium clades (1: Lanata-divaricata, 2: Chrysogena, 
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and 3: Citrina). We identified 337 NT gene trees that did not recover these six clades. Removal 

of these 337 NT genes resulted in data matrix containing 1,331 NT genes. Using these 1,331 

genes, we recalculated IC across the phylogeny and GSF at poorly supported bipartitions.  

 

Alternative trimming methods. 

Alignment trimming methodologies can have a drastic effect on inferred phylogenies (Tan et al., 

2015). To examine if our inferences were robust to different trimming methods, we also trimmed 

single gene alignments using an entropy-based approach implemented in BMGE, version 1.12 

(Criscuolo and Gribaldo, 2010). We used two different maximum entropy thresholds of 0.5 and 

0.7, which we hereafter refer to as BMGE0.5 and BMGE0.7, respectively. To examine the 

influence of this entropy-based alignment trimming approach, we used these additional datasets 

to re-infer single-gene phylogenies, species-level phylogenies, calculate IC values, and examine 

GSF at incongruent bipartitions using both the full 1,668-gene data matrix and the potential 

hidden paralog-filtered 1,331-gene data matrix. 

 

Topology tests. 

To test the previously reported hypotheses of a) the genus Penicillium being the sister group to 

Aspergillus section Nidulantes and b) monophyly of narrow Aspergillus (sections Nigri, 

Ochraceorosei, Flavi, Circumdati, Candidi, Terrei) (Taylor et al., 2016), we conducted a series 

of tree topology tests using the 1,668-gene nucleotide data matrix using IQ-TREE (Nguyen et al., 

2015). More specifically, we used the “GTR+F+I+G4” model and conducted the Shimodaira-

Hasegawa (Shimodaira and Hasegawa, 1999) and the approximately unbiased tests (Shimodaira, 

2002) as specified with the “-au” parameter. These tests were conducted using 10,000 
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resamplings using the resampling estimated log-likelihood (RELL) method (Kishino et al., 1990) 

as specified by the “-zb” parameter. We tested each hypothesis separately by generating the 

maximum likelihood topology under the constraint that the hypothesis is correct (specified using 

the “-z” parameter) and comparing its likelihood score to the score of the unconstrained 

maximum likelihood topology. 

 

Estimating divergence times. 

To estimate the divergence times for the phylogeny of the Aspergillaceae, we analyzed our NT 

data matrix used the Bayesian method implemented in MCMCTREE from the PAML package, 

version 4.9d (Yang, 2007). To do so, we conducted four analyses: we (i) identified genes 

evolving in a “clock-like” manner from the full data matrix, (ii) estimated the substitution rate 

across these genes, (iii) estimated the gradient and Hessian (Dos Reis and Yang 2013) at the 

maximum likelihood estimates of branch lengths, and (iv) estimated divergence times by Markov 

chain Monte Carlo (MCMC) analysis.  

 

(i) Identifying “clock-like” genes. 

Currently, large phylogenomic data matrices that contain hundreds to thousands of genes and 

many dozens of taxa are intractable for Bayesian inference of divergence times; thus, we 

identified and used only those genes that appear to have evolved in a “clock-like” manner in the 

inference of divergence times. To identify genes evolving in a “clock-like” manner, we 

calculated the degree of violation of a molecular clock (DVMC) (Liu et al., 2017) for single gene 

trees. DVMC is the standard deviation of root to tip distances in a phylogeny and is calculated 

using the following formula: 
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DVMC = √
1

𝑛 − 1
∑(

𝑛

𝑖=1

𝑡𝑖 − 𝑡̅)2 

 

where ti represents the distance between the root and species i across n species. Using this 

method, genes with low DVMC values evolve in a “clock-like” manner compared to those with 

higher values. We took the top scoring 834 (50%) genes to estimate divergence times. 

 

(ii) Estimating substitution rate. 

To estimate the substitution rate across the 834 genes, we used BASEML from the PAML package, 

version 4.9d (Yang, 2007). We estimated substitution rate using a “GTR+G” model of 

substitutions (model = 7) and a strict clock model (clock = 1). Additionally, we point calibrated 

the root of the tree to 96 million years ago (mya) according to TIMETREE (Hedges et al., 2006), 

which is based on several previous estimates (Berbee and Taylor 2001: 50.0 mya; Vijaykrishna 

et al. 2006: 96.1 mya; Sharpton et al. 2009: 146.1 mya). We estimated a substitution rate of 0.04 

substitutions per 10 million years. 

  

(iii) Estimation of the gradient and Hessian. 

To save computing time, the likelihood of the alignment was approximated using a gradient and 

Hessian matrix. The gradient and Hessian refer to the first and second derivatives of the log-

likelihood function at the maximum likelihood estimates of branch lengths (Dos Reis and Yang 

2013), and collectively describe the curvature of the log-likelihood surface. Estimating gradient 

and Hessian requires an input tree with specified time constraints. For time constraints, we used 
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the Aspergillus flavus – Aspergillus oryzae split (3.68-3.99 mya: Sharpton et al. 2009; Da Lage et 

al. 2013), the Aspergillus fumigatus – Aspergillus clavatus split (35-59 mya: Sharpton et al. 

2009; Da Lage et al. 2013), the origin of the genus Aspergillus (43-85 mya: Kensche et al. 2008; 

Sharpton et al. 2009; Beimforde et al. 2014; Fan et al. 2015; Gaya et al. 2015), and the origin of 

Aspergillaceae (50-146 mya: Berbee and Taylor 2001; Vijaykrishna et al. 2006; Sharpton et al. 

2009) as obtained from TIMETREE (Hedges et al., 2006).  

 

(iv) Estimating divergence times using MCMC analysis. 

To estimate divergence times using a relaxed molecular clock (clock = 2), we used the resulting 

gradient and Hessian results from the previous step for use in MCMC analysis using 

MCMCTREE (Yang, 2007) and the topology inferred using the gene partitioned approach and the 

834-gene NT matrix from the top scoring DVMC genes. To do so, a gamma distribution prior 

shape and scale must be specified. The gamma distribution shape and scale is determined from 

the substitution rate determined in step ii where shape is a=(s/s)2 and scale is b=s/s2 and s is the 

substitution rate. Therefore, a=1 and b=25 and the “rgene_gamma” parameter was set to “1 25.” 

We also set the “sigma2_gamma” parameter to “1 4.5.” To minimize the effect of initial values 

on the posterior inference, we discarded the first 100,000 results. Thereafter, we sampled every 

500 iterations until 10,000 samples were gathered. Altogether, we ran 5.1 million iterations 

(100,000 + 500 X 10,000), which is 510 times greater than the recommended minimum for 

MCMC analysis (Raftery and Lewis, 1995). Lastly, we set the “finetune” parameter to 1. 
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Statistical analysis and figure making. 

All statistical analyses were conducted in R, version 3.3.2 (R Development Core Team, 2008). 

Spearman rank correlation analyses (Sedgwick, 2014) were conducted using the “rcorr” function 

in the package HMISC, version 4.1-1 (Harrell Jr, 2015). Stacked barplots, barplots, histograms, 

scatterplots, and boxplots were made using GGPLOT2, version 2.2.1 (Wickham, 2009). 

Intersection plots (also known as UpSet plots), were made using UPSETR, version 1.3.3 (Conway 

et al., 2017). The topological similarity heatmap and hierarchical clustering were done using 

PHEATMAP, version 1.0.8 (Kolde, 2012). Phylogenetic trees were visualized using FIGTREE, 

version 1.4.3 (Rambaut, 2009). The phylogenetic tree with the geological time scale was 

visualized using STRAP, version 1.4 (Bell and Lloyd, 2015). Artistic features of figures (e.g., font 

size, font style, etc.) were minimally edited using the graphic design software Affinity Designer 

(https://affinity.serif.com/en-us/). 

 

Data availability 

All data matrices, species-level and single-gene phylogenies are available through the figshare 

repository https://figshare.com/s/3098a7f59afa071a5c28 (doi: 10.6084/m9.figshare.6465011). 

The provided link is a private link for review purposes only. The genome sequence and raw 

reads of Aspergillus spinulosporus have been uploaded to GenBank as BioProject 

PRJNA481010. 

 

https://affinity.serif.com/en-us/
https://figshare.com/s/3098a7f59afa071a5c28
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Results 

The examined genomes have nearly complete gene sets 

Assessment of individual gene set completeness showed that most of the 93 genomes (81 in the 

ingroup and 12 in the outgroup) used in our study contain nearly complete gene sets and that all 

93 genomes are appropriate for phylogenomic analyses. Specifically, the average percentage of 

BUSCO single-copy genes from the Pezizomycotina database (Waterhouse et al., 2013) present 

was 96.2 ± 2.6% (minimum: 81.1%; maximum: 98.9%; Figure S2 from Steenwyk et al., 2019c). 

Across the 93 genomes, only 3 (3.2%) genomes had < 90% of the BUSCO genes present in 

single-copy (Penicillium carneum: 88.6%; Penicillium verrucosum: 86.1%; and Histoplasma 

capsulatum: 81.1%). 

 

The generated data matrices exhibit very high taxon occupancy 

The NT and AA alignments of the 1,668-gene data matrix were comprised of 3,163,258 and 

1,054,025 sites, respectively. The data matrix exhibited very high taxon occupancy (average 

gene taxon occupancy: 97.2 ± 0.1%; minimum: 52.7%; maximum: 100%; Figure S7a, b from 

Steenwyk et al., 2019c; File S2 from (Steenwyk et al., 2019c)). 417 genes had 100% taxon-

occupancy, 1,176 genes had taxon-occupancy in the 90% to 99.9% range, and only 75 genes had 

taxon occupancy lower than 90%. Assessment of the 1,668 genes for five criteria associated with 

strong phylogenetic signal (gene-wise alignment length, average bootstrap value, completeness, 

treeness / RCV, and the number of variable sites) facilitated the construction of five subsampled 

matrices derived from 50% of the top scoring genes (Figure S7 from Steenwyk et al., 2019c; File 

S2 from Steenwyk et al., 2019c). 
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Examination of the gene content differences between the 5 NT subsampled data matrices as well 

as between the 5 AA data matrices revealed that they are comprised of variable sets of genes 

(Figure S8 from Steenwyk et al., 2019c). For example, the largest intersection among NT data 

matrices comprised of 207 genes that were shared between all NT matrices except the 

completeness-based one; similarly, the largest intersection among AA data matrices was 228 

genes and was shared between all AA matrices except the completeness-based one (Figure S8a, 

b from Steenwyk et al., 2019c). Examination of the number of gene overlap between the NT and 

AA data matrices for each criterion (Figure S8c from Steenwyk et al., 2019c) showed that three 

criteria yielded identical or nearly identical NT and AA gene sets. These were completeness (834 

/ 834; 100% shared genes; rs = 1.00, p < 0.01; Figure S7c from Steenwyk et al., 2019c), 

alignment length (829 / 834; 99.4% shared genes; rs = 1.00, p < 0.01; Figure S7f from Steenwyk 

et al., 2019c), and the number of variable sites (798 / 834; 95.7% shared genes; rs = 0.99, p < 

0.01; Figure S7i from Steenwyk et al., 2019c). The other two criteria showed greater differences 

between NT and AA data matrices (average bootstrap value: 667 / 834; 80.0% shared genes; rs = 

0.78, p < 0.01; Figure S7l from Steenwyk et al., 2019c; treeness / RCV: 644 / 834; 77.2% shared 

genes; rs = 0.72, p < 0.01; Figure S7o from Steenwyk et al., 2019c). 

 

A genome-scale phylogeny for the family Aspergillaceae 

NT and AA phylogenomic analyses of the full data matrix and the five subsampled data matrices 

under three analytical schemes recovered a broadly consistent set of relationships (Figure 1, 2, 3, 

4). Across all 36 species-level phylogenies, we observed high levels of topological similarity 

(average topological similarity: 97.2 ± 2.5%; minimum: 92.2%; maximum: 100%) (Figure 2), 

with both major genera (Aspergillus and Penicillium) as well as all sections in Aspergillus and 
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Penicillium (Houbraken and Samson, 2011; Kocsubé et al., 2016) recovered as monophyletic 

(Figures 1, 3, and 4). Additionally, all but one internodes exhibited absolute UFBoot scores 

(Hoang et al., 2018); the sole exception was internode 33 (I33), which received 95 UFBoot 

support (Figure 1 and S9 from Steenwyk et al., 2019c). 

 

Surprisingly, one taxon previously reported to be part of Aspergillaceae, Basipetospora 

chlamydospora, was consistently placed among outgroup species (Figure 1) and may represent a 

misidentified isolate. To identify the isolate’s true identity, we blasted the nucleotide sequence of 

tef1 from the isolate against the “nucleotide collection (nr/nt)” database using MEGABlast 

(Morgulis et al., 2008) on NCBI’s webserver. We found the top three hits were to Podospora 

anserina (Class Sordariomycetes, PODANS_1_19720; e-value: 0.0, max score: 1753, percent 

identity: 91%), Scedosporium apiospermum (Class Sordariomycetes, SAPIO_CDS5137; e-value: 

0.0, max score: 1742, percent identity: 92%), and Isaria fumosorosea (Class Sordariomycetes, 

ISF_05984; e-value: 0.0, max score: 1724, percent identity: 90%). These results make it difficult 

to ascribe the genome of the misidentified isolate to a specific genus and species but confirm its 

placement outside of Aspergillaceae; we refer to the isolate by its strain identifier, JCM 23157. 

 

Examination of the Aspergillaceae phylogeny reveals 14 incongruent bipartitions 

Examination of all 36 species-level phylogenies revealed the existence of 8 (8 / 78; 10.3%) 

incongruent bipartitions. Complementary examination of IC, a bipartition-based measure of 

incongruence, revealed an additional 3 / 78 (3.8%) bipartitions that displayed very high levels of 

incongruence at the gene level. Examination of the stability of robustly inferred bipartitions to 
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Figure 2. Topological similarity between the 36 phylogenies constructed using 6 different data 

matrices, 2 different sequence types, and 3 analytical schemes. 

(a) A heat map depiction of topological similarity between the 36 phylogenies constructed in this 

study. The 36 phylogenies were inferred from analyses of 2 different sequence types (i.e., 

protein, depicted in black; nucleotide, depicted in white), 3 different analytical schemes (i.e., 

partitioned, depicted in black; nonpartitioned, depicted in gray; coalescence, depicted in white), 

and 6 different matrices (full data matrix, “BUSCO1668,” and 5 subsampled ones, all starting 

with “T834”; depending on the subsampling strategy, they are identified as “T834 Alignment 

lengths,” “T834 Average bootstrap value,” “T834 Completeness,” “T834 Treeness/RCV,” and 

“T834 Variable sites”). (b) Hierarchical clustering based on topological similarity values among 

the 36 phylogenies. 

 

alternative alignment trimming approaches revealed an additional 3 / 78 (3.8%) bipartitions with 

high levels of incongruence at the gene level raising the total number of incongruent bipartitions 

to 14 (14 / 78; 17.9%). 

 

Examination of the eight conflicting bipartitions stemming from the comparison of the 36 

phylogenies showed that they were very often associated with data type (NT or AA) and scheme 

employed (concatenation or coalescence). For example, the first instance of incongruence 

concerns the identity of the sister species to Penicillium biforme (I60; Figure 1 and 3a); this 

species is P. camemberti in the reference phylogeny but analyses of the full and two subsampled 

AA data matrices with coalescence recover instead Penicillium fuscoglaucum. The data type and 

analytical scheme employed also appear to underlie the second and third instances of 

incongruence, which concern the placement of sections Exilicaulis and Sclerotiora (I74 and I78; 

Figures 1 and 3b), the fourth and fifth instances, which concern relationships among Aspergillus 

sections (I24 and I35; Figures 1 and 3c), as well as the sixth instance, which concerns 

relationships among the sections Digitata, Chrysogena, and Roquefortorum (I63; Figure 1 and 

3d). The seventh instance is also associated with data type, but not with the scheme employed; 

while the reference as well as most subsampled NT matrices support the Aspergillus persii and 
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Figure 3. The eight internodes not recovered in all 36 phylogenies. 

Internode numbers refer to internodes that have at least one conflicting topology among the 36 

phylogenetic trees inferred from the full and five subsampled data matrices across three different 

schemes and two data types. The internode recovered from the analysis of the 1,668-gene 

nucleotide matrix (Fig. 1) is shown on the left and the conflicting internode(s) on the right. Next 

to each of the internodes, the nucleotide (NT) and amino acid (AA) gene support frequency 

(GSF) values are shown. On the far right, the sequence type, scheme, and data matrix 

characteristics of the phylogenies that support the conflicting internodes are shown. NT and AA 

sequence types are represented using white and black squares, respectively; partitioned 

concatenation, nonpartitioned concatenation, and coalescence analytical schemes are depicted as 

black, gray, or white circles, respectively; and the matrix subset is written next to the symbols. 

 

Aspergillus sclerotiorum clade as sister to Aspergillus westerdijkiae (I33; Figure 1 and 3e), most 

AA data matrices recover a conflicting bipartition where A. steynii is the sister group of A. 

westerdijkiae. The final instance of incongruence was the least well supported, as 35 / 36 

(97.2%) phylogenies supported Aspergillus kawachii as the sister group to Aspergillus awamori 

(I15, Figure 1 and 3f), but analysis of one AA subsampled data matrix with coalescence instead 

recovered Aspergillus luchuensis as the sister group. 

 

For each of these bipartitions (Figure 3), we examined clustering patterns using multiple 

correspondence analysis of matrix features (i.e., sequence type and subsampling method) and 

analysis scheme among trees that support the reference and alternative topologies (Figure S10 

from Steenwyk et al., 2019c). Distinct clustering patterns were observed for I74, I78, and I33 

(Figure 3 and S10 from Steenwyk et al., 2019c). For I74 and I78, there are three alternative, 

conflicting topologies, with the first two clustering separately from the third (Figure 3b and S10b 

from Steenwyk et al., 2019c). For I33, phylogenies that support the reference and alternative 

topologies formed distinct clusters (Figure 3e). Examination of the contribution of variables 

along the second dimension, which is the one that differentiated variables that supported each 

https://journals.asm.org/doi/10.1128/mbio.00925-19?permanently=true#fig1
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topology, revealed that the distinct clustering patterns were driven by sequence type (Figure 

S10g and h from Steenwyk et al., 2019c). 

 

Examination of IC values revealed three additional bipartitions with strong signatures for 

incongruence at the gene level, defined as IC score lower than 0.10. The first instance concerns 

the sister taxon to the Aspergillus and Penicillium clade. Although all 36 phylogenies recover a 

clade comprised of Xeromyces bisporus and Monascus ruber as the sister group, the IC score for 

this bipartition is 0.00 (I3; Figure 4a); the most prevalent, conflicting bipartition supports 

Penicilliopsis zonata as sister to Aspergillus and Penicillium (Figure 4a). Similarly, although all 

36 phylogenies recover Penicillium as sister to Aspergillus, the IC score for this bipartition is 

also 0.00 (I4; Figure 4b); the most prevalent, conflicting bipartition supports X. bisporus and M. 

 

 

Figure 4. The three internodes recovered in all 36 phylogenies but that exhibit very low internode 

certainty values. 

Three bipartitions were recovered by all 36 phylogenies but had internode certainty values below 

0.10 (a to c). The internode recovered from the analysis of all 36 phylogenies, including of the 

1,668-gene nucleotide matrix (Figure 1b), is shown on the left and the most prevalent, 
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conflicting internode on the right. Next to each of the internodes, the nucleotide (NT) and amino 

acid (AA) gene support frequency (GSF) values are shown. 

 

ruber as the sister clade to Aspergillus (Figure 4b). In the third instance, all 36 phylogenies 

support Aspergillus novofumigatus and Aspergillus lentulus as sister species, but the IC score of 

this bipartition is 0.01 (I43; Figure 4c); the most prevalent, conflicting bipartition recovers A. 

lentulus as the sister species to a clade comprised of Aspergillus fumigatus and Aspergillus 

fischeri (Figure 4c). 

 

To examine the underlying individual gene support to the resolution of these 11 bipartitions, we 

examined the phylogenetic signal contributed by each individual gene in the full NT data matrix. 

In all 11 bipartitions, we found that inferences were robust to single gene outliers with strong  

 

 

Figure 5. A visual comparison of the differences between the phylogeny reported in this study 

and the phylogeny reported in the work of Kocsubé et al.. 

Tanglegram between the section-level phylogeny presented in this study (left) and the section-

level phylogeny presented by Kocsubé et al. (right). The key differences between the two 

phylogenies lie in the placements of sections Nigri, Ramigena, and Canescentia. Species in bold 
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belong to narrow Aspergillus, and red branches represent bipartitions that are not robustly 

supported in each study. 

 

phylogenetic signal (Figure S11 from Steenwyk et al., 2019c; File S4 from Steenwyk et al., 

2019c).  

 

To determine if robustly identified internodes were sensitive to potential hidden paralogs, we 

reevaluated IC in a set of 1,331 genes that passed our hidden paralogy filter. We observed that 

measurements of IC were very similar between the 1,668 and 1,331 NT datasets (rs = 0.98, p < 

0.01; Figure S12 from Steenwyk et al., 2019c). Notably, we did not identify any additional 

internodes with evidence of incongruence. In contrast, examination of IC in the 1,331 gene tree 

set showed reduced levels of incongruence at I63 (Figure 3d; IC value using the 1,668-gene data 

matrix = 0.07, IC value using the 1,331-gene data matrix = 0.10). 

 

To determine if our estimates of incongruence were robust to various trimming methods, we 

recalculated IC scores using gene trees whose alignments were trimmed with BMGE (Criscuolo 

and Gribaldo, 2010) using maximum entropy cut-off values of 0.5 or 0.7 (or BMGE0.5 or 

BMGE0.7, respectively). These analyses were done for both the set of 1,668 genes and the set of 

potential hidden paralogy-filtered 1,331 genes (File S7 from Steenwyk et al., 2019c). Altogether, 

we used four additional data sets ([two BMGE trimming parameters X two data sets of 1,668 and 

1,331 genes) to further evaluate bipartition support. We observed that IC values were very 

similar between all data sets (rs ranged from 0.97-0.99, p < 0.01 for all tests; Figure S13 from 

Steenwyk et al., 2019c). Furthermore, we noted that among incongruent internodes, GSF values 

were similar regardless of trimming method or whether or not potential hidden paralogs had been  
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Figure 6. A molecular time tree for the family Aspergillaceae. 

Blue boxes around each internode correspond to 95% divergence time confidence intervals for 

each branch of the Aspergillaceae phylogeny. For reference, the geologic time scale is shown 

right below the phylogeny. Different genera are depicted using different-colored 

boxes; Aspergillus is shown in red, Penicillium in blue, Xeromyces in green, Monascus in purple, 

and Penicilliopsis in orange. Different sections within Aspergillus and Penicillium are depicted 

with alternating dark gray and gray bars. Dating estimates were calibrated using the following 

constraints: origin of Aspergillaceae (I2; 50 to 146 million years ago [mya]), origin 

of Aspergillus (I5; 43 to 85 mya), the A. flavus and A. oryzae split (I30; 3.68 to 3.99 mya), and 

the A. fumigatus and A. clavatus split (I38; 35 to 39 mya); all constraints were obtained from 

TimeTree. 

 

removed (rs ranged from 0.97-1.00, p < 0.01 for all tests; Figure S14 from Steenwyk et al., 

2019c). 

 

Through these recalculations of IC, we identified an additional three incongruent internodes that 

had values below 0.10 in one or more of these data sets. All three cases concerned relationships 

within the genus Penicillium, namely internodes I55, I52, and I62 (Figure 4d-f). I55 had IC 

values of 0.09 and 0.08 in the 1,668- and 1,331-gene data sets trimmed by BMGE0.5, 

respectively; I52 had an IC value of 0.07 in the 1,668-gene data set trimmed by BMGE0.5; I62 

had IC values of 0.09 and 0.09 in the 1,668- and 1,331-gene data sets trimmed by BMGE0.5. 

 

To determine if removal of potential hidden paralogs and the use of different alignment trimming 

methods influenced inference of the species phylogeny, we re-inferred species trees using the 

three different maximum likelihood approaches across the five datasets resulting in 25 additional 

phylogenies ([two sequence types X two BMGE trimming approaches X three maximum 

likelihood schemes X two gene datasets of size 1,668 and 1,331] + 1,331-gene dataset trimmed 

using TRIMAL). Neither the removal of potential hidden paralogs nor the use of different 

trimming methods altered the topology of the species phylogeny in 21 of the 25 (84%) cases. In 
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the remaining four cases, the topologies recovered conflicted with the species phylogeny in 

Figure 1 with respect to an already identified conflict (Figures 3 and 4). Specifically, the species 

phylogeny inferred using coalescence with the 1,668-NT gene matrix trimmed using BMGE0.7 

inferred the topology discussed in Figure 3biii; the 1,668-AA gene matrix trimmed using 

BMGE0.5 and BMGE0.7 and the 1,331-NT gene matrix trimmed using BMGE0.7 (all analyzed 

using coalescence) inferred the topology discussed in Figure 3f. 

 

Incongruence in the Aspergillaceae phylogeny 

Examination of the 14 incongruent bipartitions with respect to their placement on the phylogeny 

(shallow, i.e., near the tips of the phylogeny or deeper, i.e., away from the tips and toward the 

base of the phylogeny) and the amount of conflict (quantified using IC and GSF) allowed us to 

group them into three categories: (i) shallow bipartitions (I15 and I60) with low levels of 

incongruence, (ii) shallow bipartitions (I33, I43, I55, and I62) with high levels of incongruence, 

and (iii) deeper bipartitions (I3, I4, I24, I35, I52, I63, I74, and I78) with varying levels of 

incongruence and typically associated with single taxon long branches.  

 

(i) Shallow bipartitions with low levels of incongruence. 

The two bipartitions that fell into this category, I60 (Figure 3a) and I15 (Figure 3f), exhibited 

low levels of incongruence among closely related taxa. For I60, the reference bipartition was 

observed in 33 / 36 phylogenies, had an IC score of 0.22, and GSFNT and GSFAA scores of 0.70 

and 0.21, respectively. Similarly, the reference bipartition for I15 was observed in 35 / 36 

phylogenies, had an IC score of 0.39, and GSFNT and GSFAA scores of 0.84 and 0.47, 
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respectively. Notably, the GSFNT scores were substantially higher for the reference bipartitions in 

both of these cases. 

 

(ii) Shallow bipartitions with high levels of incongruence. 

The four shallow bipartitions, I33 (Figure 3e), I43 (Figure 4c), I55 (Figure 4d), and I62 (Figure 

4f), in this category exhibited high levels of incongruence among closely related taxa. For I33, 

the reference bipartition was observed in 16 / 36 (44.4%), had an IC score of 0.00, and GSFNT 

and GSFAA scores of 0.38 and 0.27, respectively. The reference bipartition for I43 was observed 

in all 36 phylogenies, had an IC score of 0.01 and GSFNT and GSFAA scores of 0.39 and 0.22, 

respectively. Similarly, the reference bipartition I55 was observed in all 36 phylogenies, had an 

IC score of 0.10 using the 1,668-gene data set trimmed using TRIMAL, but an IC score of 0.09 

and 0.08 in the 1,668- and 1,331-gene data sets trimmed by BMGE0.5, respectively. I55 had 

GSFNT and GSFAA scores of 0.51 and 0.31, respectively. Lastly, reference bipartition I62 was 

observed in all 36 phylogenies, had an IC score of 0.10 using the 1,668-gene data set trimmed 

using TRIMAL, but an IC score of 0.09 in both the 1,668- and 1,331-gene data sets trimmed by 

BMGE0.5.  I62 had GSFNT and GSFAA scores of 0.55 and 0.19, respectively. Notably, in all four 

cases, substantial fractions of genes supported both the reference and the conflicting bipartitions, 

with both the GSFNT and GSFAA scores of each pair of bipartitions being almost always higher 

than 0.2. 

 

(iii) Deeper bipartitions often associated with single taxon long branches. 

The seven bipartitions in this category were I74 and I78 (Figure 3b), I24 and I35 (Figure 3c), I63 

(Figure 3d), I3 (Figure 4a), I4 (Figure 4b), and I52 (Figure 4e). All of them are located deeper in 
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the tree and most involve single taxa with long terminal branches (Figure 1). The reference 

bipartitions for internodes I74 and I78, which concern relationships among the sections Lanata-

divaricata, Exilicaulis, Citrina, and Sclerotiora were observed in 26 / 36 (72.2%) phylogenies; 

the remaining 10 / 36 (27.8%) phylogenies recovered three alternative, conflicting bipartitions. 

Both reference bipartitions had IC scores of 0.01, and GSFNT and GSFAA scores of 0.11 and 0.07, 

respectively. The reference bipartitions for internodes I24 and I35, which concern the placement 

of Aspergillus terreus, the single taxon representative of section Terrei, were observed in 27 / 36 

(75.0%) phylogenies, had IC scores of 0.01 and 0.02, and GSFNT and GSFAA scores of 0.17 and 

0.09, respectively. The reference bipartition I63, which involved the placement of the 

Penicillium digitatum, the sole representative of section Digitata, was observed in 28 / 36 

(77.8%), had an IC score of 0.07, and GSFNT and GSFAA scores of 0.41 and 0.28, respectively. 

Interestingly, the IC score for this bipartition in the hidden paralogy-filtered 1,331-gene data set 

increased to 0.10, suggesting that hidden paralogy may be a contributing factor to the observed 

incongruence at this internode. Finally, the reference bipartitions I3 and I4 (Figure 4), which 

concern the identity of the sister taxon of Aspergillus and Penicillium (I3) and the identity of the 

sister taxon of Aspergillus (I4), were found in all 36 phylogenies but both had IC values of 0.00. 

For I3, GSFNT and GSFAA scores were 0.12 and 0.15, respectively. For I4, GSFNT and GSFAA 

scores were 0.24 and 0.28, respectively. Lastly, the reference bipartition I52 was observed in all 

36 phylogenies, had an IC score of 0.14 using the 1,668-gene data set trimmed using TRIMAL, 

but an IC score of 0.07 in the 1,668-gene data set trimmed by BMGE0.5. For I52, GSFNT and 

GSFAA scores were 0.09 and 0.05, respectively. Notably, this is the only instance of 

incongruence not associated with a single taxon branch. 
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Topology tests 

The phylogeny of the genera Aspergillus and Penicillium has been a topic of debate. Our 

topology supports the reciprocal monophyly of Aspergillus and Penicillium and rejects the 

monophyly of narrow Aspergillus. Both of these results are consistent with some previous 

studies (Kocsubé et al., 2016) (Figure 6) but in contrast to other previous studies, which 

recovered a topology where Penicillium is sister to section Nidulantes within Aspergillus and 

narrow Aspergillus (sections Nigri, Ochraceorosei, Flavi, Circumdati, Candidi, Terrei) was 

monophyletic (Pitt and Taylor, 2014; Taylor et al., 2016). To further evaluate both of these 

hypotheses, we conducted separate topology constraint analyses using the Shimodaira-Hasegawa 

(Shimodaira and Hasegawa, 1999) and the approximately unbiased tests (Shimodaira, 2002). 

Both tests rejected the constrained topologies (Table 1; p-value < 0.001 for all tests), providing 

further support that Aspergillus and Penicillium are reciprocally monophyletic and that narrow 

Aspergillus is not monophyletic (Figure 6). 

 

Table 1. Topology tests reject the sister group relationship of genus Penicillium and Aspergillus 

section Nidulantes as well as the monophyly of narrow Aspergillus. 

Constrained 

topology 

Likelihood of 

unconstrained 

tree 

Likelihood of 

constrained 

tree 

Difference in 

log 

likelihood 

Shimodaira-

Hasegawa 

test p value 

Approximately 

unbiased test p 

value 

Sister group 

relationship of genus 

Penicillium and 

Aspergillus section 

Nidulantes 

-

99617175.719 

 

-99767653.909  

 

 

150478.190  

 

<0.001 <0.001 

Monophyly of 

narrow Aspergillus 

 

-

99617175.719 

 

 

-99730789.937 

 

 

113614.218  

 

<0.001 <0.001 
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A geological timeline for the evolutionary diversification of the Aspergillaceae family 

To estimate the evolutionary diversification among Aspergillaceae, we subsampled the 1,668-

gene matrix for high-quality genes with “clock-like” rates of evolution by examining DVMC 

(Liu et al., 2017) values among single gene trees. Examination of the DVMC values facilitated 

the identification of a tractable set of high-quality genes for relaxed molecular clock analyses 

(Figure S15 from Steenwyk et al., 2019c). We found that Aspergillaceae originated 117.4 (95% 

CI: 141.5 - 96.9) mya during the Cretaceous period (Figure 5). We found that the common 

ancestor of Aspergillus and Penicillium split from the X. bisporus and M. ruber clade shortly 

thereafter, approximately 109.8 (95% CI: 129.3 - 93.5) mya. We also found that the genera 

Aspergillus and Penicillium split 94.0 (95% CI: 106.8 - 83.0) mya, with the last common 

ancestor of Aspergillus originating approximately 81.7 mya (95% CI: 87.5 - 72.9) and the last 

common ancestor of Penicillium originating approximately 73.6 mya (95% CI: 84.8 - 60.7). 

 

Among Aspergillus sections, section Nigri, which includes the industrial workhorse A. niger, 

originated 49.4 (95% CI: 60.1 - 37.4) mya. Section Flavi, which includes the food fermenters A. 

oryzae and A. sojae and the toxin-producing, post-harvest food contaminant, and opportunistic 

animal and plant pathogen A. flavus, originated 30.8 (95% CI: 40.0 - 23.3) mya. Additionally, 

section Fumigati, which includes the opportunistic human pathogen A. fumigatus, originated 

18.8 (95% CI: 25.7 - 12.2) mya. Among Penicillium sections, section Fasciculata, which 

contains Camembert and Brie cheese producer P. camemberti and the ochratoxin A producer, P. 

verrucosum, originated 8.1 (95% CI: 14.7 - 4.3) mya. Section Chrysogena, which includes the 

antibiotic penicillin producing species P. chrysogenum, originated 6.5 (95% CI: 13.3 - 3.4) mya. 
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Additionally, section Citrina, which contains P. citrinum, which the first statin was isolated from 

and is commonly associated with moldy citrus fruits (Endo et al. 1976), originated 28.3 (95% CI: 

41.5 - 19.3) mya. 

 

Finally, our analysis also provides estimates of the origins of various iconic pairs of species 

within Aspergillus and Penicillium. For example, among Aspergillus species pairs, we estimate 

that A. fumigatus and the closest relative with a sequenced genome, A. fischeri (Mead et al., 

2018), diverged 3.7 (95% CI: 6.7 – 1.9) mya and Aspergillus flavus and the domesticated 

counterpart, A. oryzae (Gibbons et al., 2012), 3.8 (95% CI: 4.0 – 3.7) mya. Among Penicillium 

species pairs, we estimate P. camemberti, which contributes to cheese production to have 

diverged from its sister species and cheese contaminant P. biforme (Ropars et al., 2012) 

approximately 0.3 (95% CI: 0.5 – 0.1) mya. Finally, we estimate that P. roqueforti, another 

species that contributes to cheese production, diverged from its close relative P. carneum 

(Ropars et al., 2012) 3.8 (95% CI: 6.8 – 2.0) mya. 

  

Discussion 

Our analyses provide a robust evaluation of the evolutionary relationships and diversification 

among Aspergillaceae, a family of biotechnologically and medically significant fungi. We 

scrutinized our proposed reference phylogeny (Figure 1) against 35 other phylogenies recovered 

using all possible combinations of six multi-gene data matrices (full or subsamples thereof), 

three maximum likelihood schemes, and two sequence types and complemented this analysis 

with bi-partitioned based measures of support (Figures 1 and 2). We also examined the 

robustness of our proposed reference phylogeny to different sequence alignment trimming 
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methods and the removal of potential hidden paralogs. Through these analyses, we found that 14 

/ 78 (17.9%) bipartitions were incongruent (Figure 3 and 4) and explored the characteristics as 

well as sources of these instances of incongruence. Finally, we placed the evolution and 

diversification of Aspergillaceae in the context of geological time. 

 

Comparison of our 81-taxon, 1,668-gene phylogeny to a previous one based on a maximum 

likelihood analysis of 9 loci for 204 Aspergillaceae species (Kocsubé et al., 2016), suggests that 

our analyses identified and strongly supported several new relationships and resolved previously 

poorly supported bipartitions (Figure 1, Figure 6). The robust resolution of our phylogeny is 

likely due to the very large size of our data matrix, both in terms of genes as well as in terms of 

taxa. For example, the placement of Aspergillus section Nigri has been unstable in previous 

phylogenomic analyses (Figure S1 from Steenwyk et al., 2019c) (Yang et al., 2016; de Vries et 

al., 2017; Kjærbølling et al., 2018), but our denser sampling of taxa in this section as well as 

inclusion of representative taxa from sections Nidulantes, Versicolores, Usti, and Ochraceorosei 

now provides strong support for the sister relationship of the Aspergillus section Nigri to sections 

Nidulantes, Versicolores, Usti, and Ochraceorosei (Figure 1). 

 

However, our analysis also identified several relationships that exhibit high levels of 

incongruence (Figures 3 and 4). In general, gene tree incongruence can stem from biological or 

analytical factors (Rokas et al., 2003; Shen et al., 2017). Biological processes such as incomplete 

lineage-sorting (ILS) (Degnan and Salter, 2005), hybridization (Sang and Zhong, 2000), gene 

duplication and subsequent loss (Hallett et al., 2004), horizontal gene transfer (Doolittle and 

Bapteste, 2007) and natural selection (Castoe et al., 2009; Li et al., 2010b), can cause the 
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histories of genes to differ from one another and from the species phylogeny. Importantly, 

although the expected patterns of incongruence will be different for each factor and depend on a 

number of parameters, the observed patterns of conflict in each of the 14 cases of incongruence 

in the Aspergillaceae phylogeny can yield insights and allow the formation of hypotheses about 

the potential drivers in each case. For example, ILS often results in relatively low levels of 

incongruence; for instance, examination of the human, chimp, and gorilla genomes has showed 

that 20-25% of the gene histories differ from the species phylogeny (Patterson et al., 2006; 

Hobolth et al., 2007). In contrast, recent hybridization is expected to typically produce much 

higher levels of incongruence due to rampant sequence similarity among large amounts of 

genomic content; for instance, examination of Heliconius butterfly genomes revealed 

incongruence levels higher than 40% (Martin et al., 2013).  

 

Additionally, analytical factors such as model choice (Phillips et al., 2004), taxon sampling 

(Rokas and Carroll, 2005; Nabhan and Sarkar, 2012), hidden paralogy (Rodríguez-Ezpeleta et 

al., 2007; Philippe et al., 2009), and alignment strategy (Tan et al., 2015) can lead to erroneous 

inference of gene histories. Perhaps the most well-known instance of incongruence stemming 

from analytical factors is what is known as “long branch attraction”, namely the situation where 

highly divergent taxa, i.e., the ones with the longest branches in the phylogeny, will often 

artifactually group with other long branches (Gribaldo and Philippe, 2002). Examination of the 

effects of removal of potential hidden paralogs and different alignment trimming strategies 

showed that these analytical factors did not substantially contribute to the observed incongruence 

(Figure S12-S14 from Steenwyk et al., 2019c). Using an aggressive trimming strategy, we did 
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identify three additional instances of incongruence, but these concerned internodes that exhibit 

very low IC scores in all additional analyses. 

 

Examination of the patterns of incongruence in the Aspergillaceae phylogeny allows us to not 

only group the 14 incongruent internodes with respect to their patterns of conflict but also to 

postulate putative drivers of the observed incongruence. For example, both I15 and I60 are 

shallow internodes exhibiting low levels of incongruence, suggesting that one likely driver of the 

observed incongruence is ILS. In contrast, the shallow internodes I33, I43, I55, and I62 exhibit 

much higher levels of incongruence that are most likely to be the end result of processes, such as 

hybridization or repeated introgression. Finally, the remaining eight incongruent internodes (I3, 

I4, I24, I35, I52, I63, I74, and I78) exhibit varying levels of incongruence and are typically 

associated with single taxon long branches (Figures 1, 3, and 4), implicating taxon sampling as a 

likely driver of the observed incongruence. Given that inclusion of additional taxa robustly 

resolved the previously ambiguous placement of the long-branched Aspergillus section Nigri 

(see discussion above) as well as of other contentious branches of the fungal tree of life, such as 

the placement of the budding yeast family Ascoideaceae (Shen et al., 2017, 2018), we predict 

that additional sampling of taxa that break up the long branches associated with these seven 

internodes will lead to their robust resolution. Lastly, the IC value of internode I63 following 

removal of hidden paralogs marginally increased, suggesting that incongruence at this internode 

may also be associated with hidden paralogs.  

 

Notably, the topology of our phylogeny was able to resolve two contentious issues that emerged 

from analyses of data matrices containing a few genes (Kocsubé et al., 2016; Taylor et al., 2016) 
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and that are important for taxonomic relationships within the family. Specifically, our 

phylogenetic analyses rejected the sister group relationship of genus Penicillium and Aspergillus 

section Nidulantes as well as the monophyly of a group of Aspergillus sections that are referred 

to as narrow Aspergillus (Table 1, p-value < 0.001 for all tests). Instead, our phylogeny shows 

that the genera Aspergillus and Penicillium are reciprocally monophyletic. These results are 

consistent with the current nomenclature proposed by the International Commission of 

Penicillium and Aspergillus (https://www.aspergilluspenicillium.org/), and inconsistent with the 

phylogenetic arguments put forward in proposals for taxonomic revision (Taylor et al., 2016). 

However, it should be noted that our study did not include representatives of the genera 

Phialosimplex and Polypaecilum, which lack known asexual stages, and appear to be placed 

within the genus Aspergillus (Kocsubé et al., 2016; Taylor et al., 2016). Basipetospora species 

also lack known asexual stages and are also placed within Aspergillus (Kocsubé et al., 2016; 

Taylor et al., 2016); unfortunately, the sole genome sequenced from this genus, JCM 23157, 

appears to be a contaminant from the class Sordariomycetes (Figure 1).  

 

Finally, our relaxed molecular clock analysis of the Aspergillaceae phylogeny provides a robust 

and comprehensive time-scale for the evolution of Aspergillaceae and its two large genera, 

Aspergillus and Penicillium (Figure 5), filling a gap in the literature. Previous molecular clock 

studies provided estimates for only four internodes, mostly within the genus Aspergillus (Berbee 

and Taylor, 2001; Hedges et al., 2006; Vijaykrishna et al., 2006; Kensche et al., 2008; Sharpton 

et al., 2009; Da Lage et al., 2013; Beimforde et al., 2014; Fan et al., 2015; Gaya et al., 2015) and 

yielded much broader time intervals. For example, the previous estimate for the origin of 

Aspergillaceae spanned nearly 100 mya (50-146 mya: Berbee and Taylor 2001; Vijaykrishna et 
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al. 2006; Sharpton et al. 2009) while our dataset and analysis provided a much narrower range of 

44.7 mya (mean: 117.4; 95% CI: 141.5 - 96.9). Notably, the estimated origins of genera 

Aspergillus (~81.7 mya) and Penicillium (~73.6 mya) appear to be comparable to those of other 

well-known filamentous fungal genera, such as Fusarium, whose date of origin has been 

estimated at ~91.3 mya (Ma et al., 2013; O’Donnell et al., 2013). 

 

Fungi from Aspergillaceae have diverse ecologies and play significant roles in biotechnology 

and medicine. Although most of the 81 genomes from Aspergillaceae are skewed towards two 

iconic genera, Aspergillus and Penicillium, and do not fully reflect the diversity of the family, 

they do provide a unique opportunity to examine the evolutionary history of these important 

fungi using a phylogenomic approach. Our scrutiny of the Aspergillaceae phylogeny, from the 

Cretaceous to the present, provides strong support for most relationships within the family as 

well as identifies a few that deserve further examination. Our results suggest that the observed 

incongruence is likely associated with diverse processes such as incomplete lineage sorting, 

hybridization and introgression, as well as with analytical issues associated with poor taxon 

sampling. Our elucidation of the tempo and pattern of the evolutionary history of Aspergillaceae 

aids efforts to develop a robust taxonomic nomenclature for the family and provides a robust 

phylogenetic and temporal framework for investigation the evolution of pathogenesis, secondary 

metabolism, and ecology of this diverse and important fungal family. 
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CHAPTER 3 

An evolutionary genomic approach reveals both conserved and species-specific genetic 

elements related to human disease in closely related Aspergillus fungi2 

 

Introduction 

The ability of a microbe to cause disease is a multifactorial trait that is dependent upon diverse 

genomic loci, including genes and non-coding regulatory elements. For opportunistic fungal 

pathogens, whose “accidental” infections of humans are not a part of their normal life cycle 

(Casadevall and Pirofski, 2007), the evolution of genomic loci contributing to virulence is 

thought to have been shaped by diverse evolutionary and ecological pressures, such as avoiding 

predation from soil-dwelling amoebae and surviving in warm and stressful environmental niches 

similar to those found inside human hosts (Tekaia and Latgé, 2005; Nielsen et al., 2007; 

Hillmann et al., 2015). However, the genetic differences between fungal pathogens and their 

non-pathogenic relatives have only recently begun to be understood (Fedorova et al., 2008; 

Butler et al., 2009; Sharpton et al., 2009; Moran et al., 2011; Taylor, 2015; Gabaldón et al., 2016; 

Gupta et al., 2020; Rokas et al., 2020a). This is especially true for filamentous fungi in the genus 

Aspergillus, which infect hundreds of thousands of humans each year (Brown et al., 2012; 

Bongomin et al., 2017). 

 

Aspergillosis, the spectrum of diseases caused by fungi in the genus Aspergillus, afflicts a broad  

 

2This work is published in: Mead, M. E., Steenwyk, J. L., Silva, L. P., de Castro, P. A., Saeed, 

N., Hillmann, F., et al. (2021). An evolutionary genomic approach reveals both conserved and 

species-specific genetic elements related to human disease in closely related Aspergillus fungi. 

Genetics 218. doi:10.1093/genetics/iyab066. 
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range of animals, including humans (Seyedmousavi et al., 2015). In humans, aspergillosis is a 

major global health issue and primarily affects individuals with compromised immune systems 

or who have other lung diseases or conditions (Barrs et al., 2013; Gregg and Kauffman, 2015; 

Frisvad and Larsen, 2016). Approximately 70% of aspergillosis patients are infected with 

Aspergillus fumigatus, but other members of the genus cause the rest of the infections, with no 

individual species responsible for a disproportionately large amount of cases (Alastruey-

Izquierdo et al., 2014; Perlin et al., 2017; Latgé and Chamilos, 2019). Some of these pathogenic 

species are very closely related to A. fumigatus and belong to the same taxonomic section, 

section Fumigati (Balajee et al., 2005; Alastruey-Izquierdo et al., 2013; Houbraken et al., 2016). 

In contrast, most of the approximately 60 species in section Fumigati do not cause disease or 

have rarely been found in the clinic, suggesting that the ability to cause disease in humans 

evolved multiple times independently (or convergently) within Aspergillus (Rokas et al., 2020a). 

For example, Aspergillus oerlinghausenensis and Aspergillus fischeri, the two closest relatives of 

A. fumigatus are both considered non-pathogenic (Houbraken et al., 2016; Mead et al., 2019a; 

Steenwyk et al., 2020d). 

 

Why some Aspergillus species routinely infect humans whereas their very close relatives never 

or rarely do remains an open question (Rokas et al., 2020a). To date, studies addressing this 

question have focused on comparing A. fumigatus to one or a few closely related (usually 

pathogenic) species (Fedorova et al., 2008; Wiedner et al., 2013; Sugui et al., 2014, 2015; Mead 

et al., 2019a; dos Santos et al., 2020b; Knowles et al., 2020; Steenwyk et al., 2020d) or to larger 

numbers of very distantly related species (Kjærbølling et al., 2018). Many individual genes and 

pathways are known to contribute to A. fumigatus virulence (Abad et al., 2010; Bignell et al., 
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2016; Brown and Goldman, 2016; Steenwyk et al., 2021d), but if they are present or function in 

the same manner in other section Fumigati species, including in non-pathogens, has rarely been 

studied (Knowles et al., 2020; Steenwyk et al., 2020d). Genomic loci (i.e., genes and non-coding 

regulatory elements, and their variants) associated with pathogenicity could be shared or absent 

amongst all pathogens, including A. fumigatus, following a “conserved pathogenicity” model, or 

be uniquely present (or absent) in each pathogen (“species-specific pathogenicity” model) 

(Rokas et al., 2020a). The two models are not mutually exclusive, and the limited evidence 

available suggests that some genomic loci likely follow the conserved pathogenicity model 

(Fedorova et al., 2008; Kjærbølling et al., 2018; Knowles et al., 2020; Steenwyk et al., 2020d), 

whereas others follow the species-specific pathogenicity model (Fedorova et al., 2008; Kowalski 

et al., 2019; Mead et al., 2019a; Steenwyk et al., 2020d). 

 

To study the signatures of the repeated evolution of human pathogenicity we conducted diverse 

evolutionary analyses on the genomes of 18 Aspergillus strains representing 13 species, 

including both pathogenic and non-pathogenic species from section Fumigati. Our results show 

that previously identified virulence-related genes are largely conserved throughout section 

Fumigati and outgroups. Consistent with the species-specific pathogenicity model, we found 

dozens of gene families that were present only in a given pathogen as well as dozens of genes 

whose evolutionary rates differed between a given pathogen and the rest of the taxa. For 

example, we identified 72 A. fumigatus-specific gene families and 34 genes whose evolutionary 

rate was uniquely different in A. fumigatus. Consistent with the conserved pathogenicity model, 

we identified over 1,700 genes that showed pathogen-specific evolutionary rates; however, we 

did not identify any gene families that were shared only by pathogenic taxa. To test whether our 
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approach could identify loci that contribute to Aspergillus disease-related traits, we carried out 

functional assays of deletion mutants of 17 transcription factor-encoding genes identified in our 

bioinformatic analyses as consistent with either pathogenicity model. We found that eight genes 

(four consistent with the conserved model and four consistent with the species-specific model) 

significantly affected pathogenicity-related traits, suggesting that the evolution of Aspergillus 

pathogenicity involved both conserved and species-specific genetic contributors. More broadly, 

our study shows that an evolutionary genomic approach is a useful framework for gaining 

insights into the molecular mechanisms by which Aspergillus species impact human health. 

 

Materials and Methods 

Genome procurement, assembly, and annotation 

Genomes and annotations for A. fumigatus strains Af293 and A1163, along with all non-A. 

fumigatus, publicly available (as of July 2019) annotated genomes from section Fumigati were 

downloaded for analyses (see Table S1 from Mead et al., 2021 for NCBI accession numbers). 

We also obtained genomes and annotations for four outgroup species to facilitate phylogenetic 

analyses and comparisons. To expand the number of genomes analyzed, we assembled and/or 

annotated five additional Aspergillus genomes. More specifically, raw genomic reads for A. 

fumigatus strains F16311 and 12-7505446 were downloaded from NCBI for genome assembly 

and annotation. These strains were chosen because they, together with A. fumigatus strains 

Af293 and A1163, span the known diversity of A. fumigatus (Lind et al., 2017); additionally, 

available genomes for A. cejpii FS110, A. neoellipticus NRRL 5109, and A. viridinutans FRR 

0576 were downloaded from NCBI and annotated (Abdolrasouli et al., 2015b; Li et al., 2018; 

Urquhart et al., 2019) (Table S1 from Mead et al., 2021). To quality trim sequence reads, we 
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used Trimmomatic, version 0.36 (Bolger et al., 2014) using parameters described elsewhere 

(Steenwyk and Rokas, 2017). The resulting high-quality reads were used as input to the genome 

assembly software SPAdes, version 3.8.1 (Bankevich et al., 2012), with the ‘careful’ parameter 

to reduce mismatches and short indels and the ‘cov-cutoff’ parameter set to ‘auto.’ Partial and 

complete gene models were predicted using Augustus, version 2.5.5 (Stanke and Waack, 2003), 

with the ‘minexonintronprob’ and ‘minmeanexonintronprob’ parameters set to 0.1 and 0.4, 

respectively. Genome annotation quality was assessed using BUSCO, version 2.0.1 (Waterhouse 

et al., 2018a), with the Pezizomycotina database of orthologs from OrthoDB, version 9 

(Waterhouse et al., 2013). Genome annotation quality was similar between publicly available 

genomes and genomes assembled and/or annotated in the present project. For example, the 

publicly available assembly and annotation for A. fumigatus strain A1163 had 94.0% of BUSCO 

genes present in single copy while the assembled and annotated genome for A. fumigatus strain 

F16311 had 93.9% of BUSCO genes present in a single copy. 

 

Inference of Gene Families 

We first identified orthologous genes by clustering genes with high sequence similarity into 

orthologous groups using Markov clustering (van Dongen, 2000) as implemented in OrthoMCL, 

version 1.4 (Li et al., 2003), with an inflation parameter of 2.8. Gene sequence similarity was 

determined using a blastp “all-vs-all” using NCBI’s Blast+, version 2.3.0 (Camacho et al., 2009) 

with an e-value cutoff of 1e-10, a 30% identity cutoff, and a 70% match cutoff. In subsequent 

analyses, these 14,294 orthogroups were used as proxies for gene families. 3,601 of the 14,294 

orthogroups had all 18 taxa represented by a single sequence and are hereafter referred to as 

single-copy orthologous genes. Finally, 16 orthogroups had the same number of family members 
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in each taxon but in more than one copy, and 10,677 orthogroups had a different number of 

family members in at least one taxon.  

 

Phylogenomic data matrix construction and analyses 

To construct a phylogenomic data matrix, we retrieved the protein sequences of the 3,601 single-

copy orthologous genes and individually aligned them with Mafft, version 7.402 (Katoh and 

Standley, 2013), using the same parameters as described elsewhere (Steenwyk et al., 2019c). 

Nucleotide sequences were threaded onto the protein alignments using the thread_dna function in 

PhyKIT, version 0.1 (Steenwyk et al., 2021b). The codon-based sequences were subsequently 

trimmed using trimAl, version 1.2rev59 (Capella-Gutierrez et al., 2009), using the ‘automated1’ 

parameter. The resulting single-gene alignments were concatenated into a single data matrix 

using the create_concat function in PhyKIT, version 0.1 (Steenwyk et al., 2021b). 

 

To infer the evolutionary history of Aspergillus species in section Fumigati and the outgroup 

taxa, we used concatenation without gene-based partitioning, concatenation with gene-based 

partitioning, and gene-based coalescence in a maximum likelihood framework (Felsenstein, 

1981; Rokas et al., 2003; Edwards, 2009; Zhang et al., 2018). For concatenation without gene-

based partitioning, we used the 3,601-gene matrix as input to IQ-TREE (Nguyen et al., 2015) 

and inferred the best-fitting model of substitutions according to Bayesian information criterion 

values using the “-m TEST” parameter. The best-fitting model was determined to be a general 

time-reversal model with invariable sites, empirical nucleotide frequencies, and a discrete 

gamma model with four rate categories or “GTR+F+I+G4” (Tavaré, 1986; Yang, 1994; Gu et al., 

1995). Lastly, we increased the number of candidate trees used during maximum likelihood 
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search by setting the “-nbest” parameter to 10. Bipartition support was assessed using 5,000 

ultrafast bootstrap approximations (Hoang et al., 2018). We refer to the tree inferred using this 

method as the reference tree topology depicted in Figure 7. 

 

 

Figure 7. Genome-scale phylogeny and evolution of net gene gains or losses 

across Aspergillus section Fumigati. 

Relationships among taxa in section Fumigati inferred from a concatenation-based, maximum 

likelihood approach. The asterisk next to A. neoellipticus denotes that in our coalescence 

approach this taxon was placed sister to all A. fumigatus strains. Gene gains and losses were 

calculated based on a maximum likelihood framework implemented in DupliPHY-ML (Ames et 

al. 2012) that utilized the 14,294 orthogroups we constructed as part of our phylogenomic 

analyses as proxies for gene families. Branches are colored based on the number of net gene 

gains or losses, and 8,676 genes were inferred at the last common ancestor of all taxa studied. 

Numbers at branch tips represent the total number of genes in that genome. Strain designations 

are in parenthesis next to species names and type strains are denoted by a superscript “T” next to 

their strain designations. Insert shows the phylogeny with branch lengths reflective of the 

estimated number of nucleotide substitutions per site (scale bar is 0.07 substitutions/site); taxa 

are in the same order as the larger cladogram. The number of gene gains, losses, and the net gain 

or loss are shown in Supplementary Table S2 from Mead et al., 2021. 

 

To infer the evolutionary history of Aspergillus species in section Fumigati and the outgroup 

strains using concatenation with gene-based partitioning and coalescence, we first determined the 

best-fitting model of substitution using the “-m TEST” parameter and reconstructed the 



62  

phylogeny of the 3,601 single-copy orthologous genes individually using default IQ-TREE 

parameters (Nguyen et al., 2015). For concatenation with gene-based partitioning, we created a 

nexus-format partition file that describes gene boundaries in the 3,601-gene matrix and the best-

fitting model of substitutions for each partition. We used the nexus-format partition file as input 

using the “-spp” parameter along with the concatenated 3,601-gene matrix to reconstruct the 

Fumigati phylogeny. Bipartition support was assessed using 5,000 ultrafast bootstrap 

approximations (Hoang et al., 2018). For coalescence, we first collapsed lowly supported 

bipartitions in all single-gene trees defined as less than 80% ultrafast bootstrap approximation 

support to reduce signal from poorly supported bipartitions. To do so, we assessed bipartition 

support using 5,000 ultrafast bootstrap approximations for individual single-gene trees (Hoang et 

al., 2018). To infer a coalescence-based phylogeny, we combined all single-gene trees with 

collapsed bipartitions into a single file and used it as input to ASTRAL-III, version 5.6.3 (Zhang 

et al., 2018), with default parameters. Bipartition support was assessed using posterior 

probabilities.  

 

Gene family history  

To determine the evolutionary history of the 14,294 gene families across section Fumigati 

species and outgroups, we implemented a maximum likelihood framework with a birth-death 

innovation model and gamma-distributed rates across families as implemented in DupliPHY-ML 

(Ames et al., 2012). DupliPHY-ML takes as input a matrix of gene family copy number and a 

phylogeny. To construct a matrix of gene family copy number, we used all orthologous groups of 

genes constructed as part of our phylogenetic analyses as proxies for gene families and used the  
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Figure 8. Gene families are largely conserved across section Fumigati, regardless of 

pathogenicity level. 

(A) Some virulence-related genes have different presence/absence patterns across strains in 

section Fumigati. Left, cladogram from Figure 1 showing the relationships amongst the 18 

genomes studied. Gray box indicates taxa belonging to section Fumigati. Right, heatmaps of the 

105/189 gene families related to virulence that exhibited at least one gene presence/absence 

change in at least one taxon, split into groups based on their general biological functions. Gene 

family labels can be found in Supplementary Table S3 from Mead et al., 2021 in the same order 

presented here from left to right. (B) Gene families with representatives from all strains are the 

most prevalent. Upset plot (Conway et al. 2017) showing the number of all gene families present 

or absent in specific sets of strains. Black bars, gene family sets with members in more than one 

strain. White bars, strain-specific gene family sets. 

 

number of gene sequences for a given species as the copy number information per gene family. 

For the phylogeny, we used the reference phylogeny described previously. 

 

Gene Ontology Enrichment Analyses 

To determine if lists of genes of interest contained enriched Gene Ontology terms, we used 

GOATOOLs version 0.9.7 (Klopfenstein et al., 2018). Annotations for the A. fumigatus Af293 

genome were downloaded from version 45 of FungiDB (Basenko et al., 2018), and the 2019-07-

01 version of the basic Gene Ontology (Ashburner et al., 2000; GeneOntologyConsortium, 2004) 

was used for all analyses. A term was considered enriched if it had an adjusted p-value (using the 

Benjamini-Hochberg method) less than 0.05. 

 

Gene Family Expansions and Contractions 

To study if the number of gene family members is expanded or contracted in classes of strains 

(pathogens or non-pathogens) or in specific strains, we carried out a phylogenetically-informed 

analysis of variance with the phylANOVA function located within version 0.7-70 of the phytools 

package (Revell, 2012) with the 10,677 orthogroups that had a different number of family 

members in at least one taxon. Taxon relationships were provided from the phylogenetic tree that 
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resulted from the concatenation without gene based partitioning approach. The simulation-based 

ANOVA was performed for each gene family and run with 10,000 simulations in order to derive 

a p-value reflecting if the average number of genes was different in the three groups of strains: A. 

fumigatus strains, other pathogens, and non-pathogens (see the Results section for how these 

groups were defined). P-values were then corrected using the Benjamini-Hochberg method found 

within the “p.adjust” function in R. Gene families were considered significantly different if their 

adjusted p-values were less than 0.05. Tukey’s range post-hoc test from the Python module 

“statsmodels” version 0.10.0 (Seabold and Perktold, 2010) was then carried out on significantly 

different gene families in order to determine if the average number of gene family members 

differed in any of the pairwise comparison (ex. the number of genes in A. fumigatus vs non-

pathogenic species). 

 

Estimating rates of molecular evolution 

To determine the rate of sequence evolution across the evolutionary history of Fumigati species 

on a per gene basis, we used measures of the rate of nonsynonymous substitutions (dN) over the 

rate of synonymous substitutions (dS) (hereafter referred to as dN/dS or ω) using an approach 

described elsewhere (Steenwyk et al., 2019a). To do so, we used untrimmed codon-based 

alignments generated during the construction of the 3,601-gene matrix used for phylogenomic 

analyses. For each of the 3,601 genes, we calculated ω using PAML, version 4.9 (Yang, 2007), 

under two hypotheses: a null hypothesis (HO) and an alternative hypothesis (HA). For HO, we 

allowed a single ω value to represent the rate of sequence evolution across the reference 

phylogeny. For the first HA, we tested if different groups (A. fumigatus, other pathogens, or non- 
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Figure 9. Genes in section Fumigati exhibit both pathogen- and species-specific rates of 

evolution. 

(A) The null hypothesis that all branches in the phylogeny have the same ω value. (Bi) 

Alternative hypothesis examining the conserved pathogenicity model of gene evolution where 

genes are evolving at rates that correspond to their pathogenicity level. Branches are colored 

based on their strain category (A. fumigatus—most pathogenic, other pathogens, and 

nonpathogens—least pathogenic) and evolutionary rate. (Bii) Violin and box plots showing the ω 

values for each of 1,742 genes (49% of all single-copy genes) that exhibited different ω values 

(P-value < 0.01) in the three groups of strains (A. fumigatus, other pathogens, and 

nonpathogens). Ten genes had ω values > 0.8 in A. fumigatus strains and are not shown here (see 

Supplementary Table S4 from Mead et al., 2021). *adjusted P-value < 0.0001 in a Paired 

Wilcoxon Signed-Rank test. (Biii) Left, pie chart showing the number of genes that either did 

(light pink) or did not (dark pink) have different ω values in strains with different pathogenicity 

levels. Right, pie chart further detailing the relative magnitude of ω values of genes in strains 

with different pathogenicity levels. (Ci) A second alternative hypothesis examining the species-

specific pathogenicity model of gene evolution where genes are evolving at one rate in one taxon 

and a different rate in all other taxa. Shown here is the model that was tested for A. lentulus 

where genes in A. lentulus experienced one rate of evolution (yellow), whereas their counterparts 

in all other taxa exhibited a different rate (gray). (Cii) Violin and box plots showing the 

difference between ω values of genes that had one ω in the pathogen, a different ω value in other 

taxa analyzed (P < 0.01), and were not found also to have pathogen-specific rates (i.e., were not 

included in the set of 1,742 genes shown in B). The numbers of genes used to construct these 

plots were 34 for A. fumigatus, 85 for A. lentulus, 187 for A. novofumigatus, 130 for A. 

thermomutatus, 134 for A. udagawae, and 190 for A. viridinutans. ω value differences between 

the pathogen of interest and all other strains that were greater than two are not shown and 

constituted only 13/643 comparisons that exhibited P < 0.01 and were not found in the conserved 

pathogenicity analyses (B). Strains are colored the same as in (B). (Ciii) Bar chart showing the 

number of genes where the gene in one pathogen is evolving faster or slower than its 

counterparts in all other strains. “Faster,” genes evolving faster in the pathogen compared with 

all other taxa. “Slower,” genes evolving slower in the pathogen compared with all other taxa. 

Taxa in all phylogenies are in the same order as in Figure 7. 

 

pathogens) were associated with different rates of sequence evolution. For the second HA, we 

tested if each gene was evolving at a unique rate in each pathogen, relative to the other branches 

in the tree (Figure 9Ci). For each comparison, to determine if HA significantly differed from HO, 

we used a likelihood ratio test (α = 0.01). 
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Amoeba Predation Assays 

To test whether our evolutionary genomic analyses could identify loci that contribute to 

resistance to phagocytosis, we conducted amoeba predation assays. Asexual spores (conidia) of 

A. fumigatus (either transcription factor mutants previously described (Furukawa et al., 2020) 

and obtained as described in (Zhao et al., 2019a) or the background strain CEA17) were 

incubated 4 h at 37°C in Czapek-Dox medium (CZD, Sigma-Aldrich Chemie, Munich, 

Germany) to induce swelling, and confronted with Protostelium aurantium at a prey-predator 

ratio of 10:1 (105 conidia and 104 trophozoites of P. aurantium) for 18 h at 22oC. Mutants were 

chosen based on the traits their genes possessed in the lists of genes identified in the evolutionary 

genomic analyses (ex. only in A. fumigatus or fast-evolving in pathogens). After confrontation, 

the assay plate was incubated for 1 h at 37oC to inactivate the amoebae. Subsequently, 0.002% 

[w/v] resazurin (Sigma-Aldrich, Taufkirchen, Germany) was added and metabolic rates were 

calculated from the time dependent reduction of resazurin to the fluorescent resorufin over 3 h at 

37oC using an Infinite M200 Pro fluorescence plate reader (Tecan, Männedorf, Switzerland). 

Survival was determined from the difference in the metabolic rates of the fungus after amoeba 

confrontation and amoeba-free controls. These controls were also used to determine the fitness of 

each strain in CZD-medium. Essentially the same assay was carried out to determine the survival 

of germlings of A. fumigatus, except that conidia of A. fumigatus were pre-grown to germlings 

for 10 h at 37C in CZD medium before the addition of trophozoites of P. aurantium.  

 

Virulence assays in the great wax moth (Galleria mellonella) model of fungal disease 

To test whether our evolutionary genomic analyses could identify loci that contribute to fungal 

disease, we conducted virulence assays using the greater wax moth (Galleria mellonella) model 



69  

of fungal disease. Galleria mellonella larvae were obtained by breeding adult larvae (Fuchs et 

al., 2010) weighing 275-330 mg in starvation conditions in petri dishes at 37°C in the dark for 24 

hours prior to infection. All selected larvae were in the final stage of larval (sixth) stage 

development. Fresh asexual spores of each strain of A. fumigatus were obtained. For each strain, 

spores were counted using a hemocytometer and the initial concentration of the spore 

suspensions for the infections were 2×108 spores/ml. A total of 5 μl (1×106 spores) of each 

suspension was inoculated per larva. The control group was composed of larvae inoculated with 

5 μl of PBS to observe death by physical trauma. The inoculation was performed using a 

Hamilton syringe (7000.5KH) through the last left proleg. After infection, the larvae were kept in 

petri dishes at 37°C in the dark and were scored daily. Larvae were considered dead when a lack 

of movement was observed in response to touch. The viability of the inoculum administered was 

determined by plating a serial dilution of the asexual spores in 37% YAG medium. The statistical 

significance of the comparative survival values was calculated using the log rank analysis of 

Mantel-Cox and Gehan-Brestow-Wilcoxon found in the statistical analysis package Prism. 

 

Data Availability 

All supplementary material and their descriptions can be found on figshare at 

https://doi.org/10.6084/m9.figshare.14424386. 

 

 

https://doi.org/10.6084/m9.figshare.14424386
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Results 

A genome-scale phylogeny of Aspergillus section Fumigati 

Phylogenetic relationships among taxa in section Fumigati (Table S1 from Mead et al., 2021) 

were examined using three maximum likelihood approaches – concatenation without gene-based 

partitioning, concatenation with gene-based partitioning, and coalescence – using 3,601 single-

copy orthologous genes. These 3,601 genes were the subset of the 14,294 groups of orthologous 

genes inferred for these 18 taxa (see Methods). Both concatenation approaches yielded the same 

topology, recovering A. neoellipticus nested within A. fumigatus (Figure 7). All bipartitions 

received full support except the split between A. neoellipticus and A. fumigatus strains F16311 

and 12-750544, which received 98% ultrafast bootstrap approximation support. The coalescence 

approach inferred a fully supported alternative topology that placed A. neoellipticus sister to the 

four A. fumigatus strains. Whether A. neoellipticus is conspecific with A. fumigatus or a distinct 

species has been previously discussed in the literature (Li et al., 2014) and our genome-scale 

analyses reflect this debate. Given the close evolutionary relationship of the two species, we 

choose to refer to A. neoellipticus as a strain of A. fumigatus rather than a distinct species.  

 

Broad conservation of genes and gene families, including those related to virulence, across 

section Fumigati 

To understand variation in the distribution of genes, including ones known to be involved in A. 

fumigatus virulence (Abad et al., 2010; Bignell et al., 2016; Kjærbølling et al., 2018; Mead et al., 

2019a; Urban et al., 2019; Steenwyk et al., 2021d), we inferred gene and gene family gains and 

losses for every branch on the phylogeny (Figures 7 and S1 from Mead et al., 2021). The number 

of gene family members at each node of the tree was estimated based on a maximum likelihood 



71  

framework implemented in DupliPHY-ML (Ames et al., 2012) that utilized the 14,294 

orthogroups we constructed as part of our phylogenomic analyses as proxies for gene families. 

The same dataset was used in our gene family analyses; in these analyses, we did not use the 

numbers of family members in each taxon but whether a specific gene family was present / 

absent in a given taxon. We inferred a net gain of 307 genes in the last common ancestor of 

section Fumigati. In addition, we found a net loss of 171 genes in the last common ancestor of A. 

fumigatus strains (Figure 7 and Table S2 from Mead et al., 2021). An estimated net gain of 494 

genes occurred in the last common ancestor of the two A. fumigatus reference strains, A1163 and 

Af293. The same general patterns of genome expansion and contraction were observed when 

gene family gain and loss were estimated (Figure S1 from Mead et al., 2021).  

 

To identify genes and gene families whose evolution was consistent with the conserved 

pathogenicity and species-specific pathogenicity models, we searched the 18 Aspergillus 

genomes for genes that were conserved across pathogens or specific to individual pathogens 

using both candidate and unbiased approaches. The candidate approach consisted of inferring the 

presence or absence pattern of 206 virulence-related genes (Steenwyk et al., 2021d) in each of 

the 18 genomes. Our gene family analysis placed the 206 virulence-related genes into 189 gene 

families. The largest virulence-related gene family (containing the transporter abcC – 

Afu1g14330 (Paul et al., 2013)) had 259 family members spread across all 18 genomes, and the 

smallest gene family (containing the terpene cyclase fma-TC – Afu8g00520 – from the 

fumagillin biosynthetic gene cluster (Guruceaga et al., 2018)) had six family members spread 

across only six of the genomes we analyzed. The same number of family members was found in 

every genome for 84/189 (~44%) of the virulence-related gene families, including for 81 families 

https://fungidb.org/fungidb/app/record/gene/Afu1g14330
https://fungidb.org/fungidb/app/record/gene/Afu8g00520
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with one gene family member in each strain. Of those virulence-related gene families that 

differed in family member size across the 18 genomes, there were no virulence-related gene 

families with only members in pathogens, section Fumigati species, or A. fumigatus (Figure 2A).  

 

We inferred that 164/189 virulence-related gene families were already present in the last 

common ancestor of all section Fumigati species. Similarly, we estimated that on average, 12 

genes have been lost from virulence-related gene families during the evolution of A. fumigatus 

strains 12-750544, F16311, and A. neoellipticus and 2 genes have been gained from virulence-

related gene families during the evolution of A. fumigatus strains Af293 and A1163 compared to 

the A. fumigatus last common ancestor. The finding that many virulence-related genes are 

conserved across both pathogens and non-pathogens in section Fumigati suggests that most 

known genetic determinants of virulence likely evolved for functions other than causing disease 

in humans and have been instead recruited into performing roles important for pathogenicity in 

certain species. 

 

Our unbiased approach consisted of analyzing all 14,294 gene families that resulted from 

constructing orthologous groups of genes from all 18 Aspergillus genomes. Similar to what we 

observed with virulence-related genes, we found that 4,361/14,294 gene families (~31%) had 

family members in each of the 18 strains analyzed, and no gene families were present only in 

pathogens (Figure 2B). However, we found 98 gene families that were specific to section 

Fumigati (Figure 2B and Table S4 from Mead et al., 2021). While the 98 gene families were not 

enriched for any Gene Ontology biological processes, molecular functions, or cellular 

compartments, the group contained genes associated with previously identified virulence-related 
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traits, such as: a gene encoding a dimethylallyl tryptophan synthase (cdpNPT – Afu8g00620) 

located near the fumitremorgin-fumagillin-pseurotin supercluster (Yin et al., 2007; Wiemann et 

al., 2013), a major facilitator type transporter (mdr3 – Afu3g03500) whose gene is highly 

expressed in A. fumigatus strains resistant to drugs (Nascimento et al., 2003; Da Silva Ferreira et 

al., 2004), and a homolog of mgtC (Afu7g05060), a bacterial virulence factor required for 

survival in macrophages (Blanc-Potard and Groisman, 1997; Gastebois et al., 2011). 

 

We found 72 gene families that were uniquely present in A. fumigatus (Figure 2B and Table S4 

from Mead et al., 2021). These A. fumigatus-specific genes were not enriched for any GO terms 

and have not previously been tested for roles in virulence-related traits. The number of uniquely 

present gene families in other pathogens ranged from 1,280 in A. novofumigatus to 303 in A. 

lentulus. We also found two gene families (predicted glucose-methanol-choline oxidoreductase 

family members - NFIA_036190/NFIA_036210, and a membrane dipeptidase - NFIA_057190) 

that had members in all other taxa except A. fumigatus and one gene family found only in non-

pathogenic taxa (a hypothetical protein with no identifiable domains – NFIA_057720). In 

summary, gene families are largely conserved across pathogens and non-pathogens in section 

Fumigati, but 72 gene families were found only in A. fumigatus; while these gene families have 

yet to be investigated for their potential roles in virulence, they represent candidates for the 

species-specific pathogenicity model.  

 

The distributions of few gene families are associated with pathogenicity 

Our analyses did not identify gene families whose presence/absence patterns were conserved in 

all pathogens found in section Fumigati. An alternative hypothesis is that the number of gene 

https://fungidb.org/fungidb/app/record/gene/Afu8g00620
https://fungidb.org/fungidb/app/record/gene/Afu3g03500
https://fungidb.org/fungidb/app/record/gene/Afu7g05060
https://fungidb.org/fungidb/app/record/gene/NFIA_036190
https://fungidb.org/fungidb/app/record/gene/NFIA_036210
https://fungidb.org/fungidb/app/record/gene/NFIA_057190
https://fungidb.org/fungidb/app/record/gene/NFIA_057720
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family members in a given taxon could reflect the organisms’ ability to cause disease. To test 

this hypothesis we carried out a phylogenetically informed ANOVA (Revell, 2012) on all 10,677 

gene families that displayed a different number of gene family members in at least one taxon. 

For this analysis we split the 18 Aspergillus taxa into three groups based on their pathogenicity 

levels (i.e., how frequently they are generally found in the clinic): A. fumigatus (most 

pathogenic), other pathogens (that are not A. fumigatus), and non-pathogens (least pathogenic). 

While we focus here on identifying pathogenicity-related genes, this approach will likely also 

identify genes important for A. fumigatus-specific traits unrelated to pathogenicity as A. 

fumigatus is the only species in its category.  

 

We found 83 gene families that had statistically significant differences in the number of 

members between groups (Figure S2 from Mead et al., 2021). After conducting Tukey’s post-hoc 

test on all 83 gene families, we observed that 72/83 gene families had more copies in A. 

fumigatus and were in fact those previously identified as “A. fumigatus-specific” in our strict 

gene presence/absence analysis (Table S4 from Mead et al., 2021). One of the remaining 11 gene 

families was the membrane dipeptidase (NFIA_057190) found during our gene presence/absence 

analysis in all genomes other than A. fumigatus. The hypothetical gene family (NFIA_057720) 

found only in non-pathogenic species with the same gene family presence/absence analysis 

(Figure 8B) was also identified via the phylogenetically informed ANOVA. The remaining nine 

gene families had the same number of genes in A. fumigatus and non-pathogens but a different 

number of family members in the other pathogens. Three (P174DRAFT_459701, 

P174DRAFT_448681, and P174DRAFT_440824) possessed no conserved domains, and the 

other six had a carbohydrate binding domain (P174DRAFT_502341 - PF09362), three ankyrin 

https://fungidb.org/fungidb/app/record/gene/NFIA_057190
https://fungidb.org/fungidb/app/record/gene/NFIA_057720
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_459701
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_448681
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_440824
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_502341
http://pfam.xfam.org/family/PF09362
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repeat domains (P174DRAFT_501662 – PF12796), a major facilitator superfamily domain 

(P174DRAFT_432793 – PF07690), a domain of unknown function (P174DRAFT_509497 – 

PF11905), a sulfur-carrier domain (P174DRAFT_347437 – PF03473), and an aldehyde 

dehydrogenase family domain (P174DRAFT_378794 – PF00171), respectively. Together, these 

data show that few gene families exhibit significant variation in their numbers across section 

Fumigati with respect to pathogenicity.  

 

Many genes experienced faster rates of evolution in pathogenic species 

Another way in which genomes evolve that can affect pathogenicity is through changes in the 

evolutionary rates of their constituent genes (Yang and Bielawski, 2000). We carried out two 

evolutionary rate analyses to test whether our set of 3,601 single-copy orthologous genes 

exhibited different rates of evolution in pathogens compared to non-pathogens. For both 

analyses, our null hypothesis was that for a given single-copy gene, a single rate () represented 

the rate of sequence evolution for each gene in every strain, regardless of the pathogenicity level 

of the organisms examined (Figure 9A). In the first analysis, our alternative hypothesis was that 

each gene evolved at a unique rate in each of our three groups (A. fumigatus strains, other 

pathogens, and non-pathogens) (Figure 9Bi). We observed that 49% of genes tested 

(1,742/3,601) rejected the null hypothesis, suggesting that the evolutionary rate of these genes 

differs among the three groups. Of the 1,742 genes with three different  values, 88% 

(1,532/1,742) had faster rates in pathogenic organisms (Figure 9Biii) and 10 had relatively high 

 values (> 0.8) in A. fumigatus (Table S4 from Mead et al., 2021). None of these 10 fastest-

evolving genes have previously been studied and contain a variety of domains likely involved in 

diverse functions ranging from RNA binding to catalyzing oxidation/reduction reactions. Each 

https://fungidb.org/fungidb/app/record/gene/P174DRAFT_501662
http://pfam.xfam.org/family/PF12796
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_432793
http://pfam.xfam.org/family/PF07690
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_509497
http://pfam.xfam.org/family/PF11905
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_347437
http://pfam.xfam.org/family/PF03473
https://fungidb.org/fungidb/app/record/gene/P174DRAFT_378794
http://pfam.xfam.org/family/PF00171
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group also exhibited its own statistically different distribution of  values (Figure 9Bii). Of the 

81/189 virulence-related gene families that were present in a single copy in each Aspergillus 

genome, 56% (45/81) exhibited different rates of evolution.  

 

In the second analysis, we tested if each gene was evolving at a unique rate in each pathogen, 

relative to the other species we analyzed (Figure 9Ci). We found that, on average, 127 single-

copy genes exhibited a different rate in the pathogen of interest than in the rest of species and 

were not found also to have pathogen-specific rates, with most evolving faster in the pathogens 

(Figure 9Cii and 9Ciii). A. fumigatus had the smallest number of genes whose evolutionary rates 

differed from the rest of the species (34), while A. viridinutans had the most (190) (Table S5 

from Mead et al., 2021). Overall, our data show that genes in pathogens are evolving faster than 

in non-pathogens, both in a conserved and species-specific manner. 

 

Transcription factors with pathogenicity-related patterns of evolution have diverse effects 

on virulence 

To test if any of the genes whose evolutionary signatures differed between pathogens and non-

pathogens directly affected either fungal or host survival, we tested 17 knockout strains of 

transcription factor-encoding (TF) genes (Furukawa et al., 2020) in two virulence-related assays. 

One TF (Afu7g00210) was found only in A. fumigatus (Figure 8B), one (Afu6g08540) was 

identified as being fast-evolving in A. fumigatus, four (Afu2g17895, Afu3g02160, Afu7g04890, 

and gliZ - Afu6g09630) were members of gene families with a statistically significant higher 

number of family members in pathogens in a preliminary one-way ANOVA (but not in our 

phylogenetically-informed ANOVA), five (Afu1g11000, Afu2g00470, Afu6g11750,  

https://fungidb.org/fungidb/app/record/gene/Afu7g00210
https://fungidb.org/fungidb/app/record/gene/Afu6g08540
https://fungidb.org/fungidb/app/record/gene/Afu2g17895
https://fungidb.org/fungidb/app/record/gene/Afu3g02160
https://fungidb.org/fungidb/app/record/gene/Afu7g04890
https://fungidb.org/fungidb/app/record/gene/Afu6g09630
https://fungidb.org/fungidb/app/record/gene/Afu1g11000
https://fungidb.org/fungidb/app/record/gene/Afu2g00470
https://fungidb.org/fungidb/app/record/gene/Afu6g11750
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Figure 10. Multiple transcription factors whose evolution varies with respect 

to Aspergillus pathogenicity affect the survival of A. fumigatus during amoeba predation. 

(A) Survival of swollen A. fumigatus asexual spores (conidia) after interaction with P. 

aurantium. Spores of A. fumigatus were incubated 4 h at 37°C in CZD medium and confronted 

with P. aurantium at a prey–predator ratio of 10:1 (105 spores and 104 trophozoites of P. 
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aurantium). Survival is expressed as the relative reduction in the metabolic rate of the fungus in 

comparison to amoeba-free controls over 3 h. Data represent the mean and SD of three biological 

replicates. *P < 0.1 in an adjusted Dunn Test comparing the survival of the mutant strain to the 

parental strain CEA17. (B) Survival of A. fumigatus germlings after interaction with P. 

aurantium. Asexual spores of A. fumigatus were pre-grown to germlings for 10 h at 37°C in CZD 

medium and confronted with P. aurantium. All other assay parameters are the same as in (A). No 

mutant strain exhibited statistically significant difference in survival relative to CEA17 in an 

adjusted Dunn test. Both asexual spores and germling confrontation assays were confirmed to 

have significant P-values (<0.05) in Kruskal–Wallis tests before carrying out the post-hoc test 

and mutant strains did not exhibit large growth phenotypes in the absence of amoeba 

(Supplementary Figure S4 from Mead et al., 2021). Mutants are color-coded based on genomic 

traits related to pathogenicity that they possess. For the “On average, more family members in 

pathogens” and “On average, more family members in A. fumigatus” groups, the family 

members did not exhibit a statistically significant different number of family members in our 

phylogenetically informed ANOVA (Supplementary Figure S2 from Mead et al., 2021). 

Knockout mutants were constructed in the CEA17 background (Furukawa et al. 2020), but A. 

fumigatus strain Af293 gene ids for the corresponding orthologous genes are shown here and 

in Figure 5. Gene absence patterns were confirmed with tblastn. A potential, low-confidence 

ortholog of Afu5g01065 was found in A. wentii; however, all other A. fumigatus genes were 

found missing in the species listed. The mutant of Afu2g16310 could not be assayed due to 

technical reasons. 

 

Afu3g00210, and Afu8g05750) were members of gene families with a statistically significant 

higher number of family members in A. fumigatus in the same preliminary one-way ANOVA 

(but also not in our phylogenetically-informed ANOVA), and six (Afu2g17860, Afu5g01065, 

Afu5g14530, Afu1g01340, Afu3g01640, and Afu2g16310) were found only section Fumigati. 

None of the TF mutants exhibited a growth defect compared to their parent strain (CEA17) when 

grown in conventional lab conditions (Figure S3 from Mead et al., 2021). 

 

In the first assay, asexual spores (conidia) or germlings from either a background strain of A. 

fumigatus (CEA17) or one of the A. fumigatus knockout mutants of transcription factors were 

incubated with Protostelium aurantium, a fungivorous amoeba used to study how fungi may 

have evolved the ability to evade or survive phagocytosis by human immune cells (Radosa et al., 

2019). We found that mutant asexual spores of four genes (Afu2g17860, Afu2g17895,  

https://fungidb.org/fungidb/app/record/gene/Afu3g00210
https://fungidb.org/fungidb/app/record/gene/Afu8g05750
https://fungidb.org/fungidb/app/record/gene/Afu2g17860
https://fungidb.org/fungidb/app/record/gene/Afu5g01065
https://fungidb.org/fungidb/app/record/gene/Afu5g14530
https://fungidb.org/fungidb/app/record/gene/Afu1g01340
https://fungidb.org/fungidb/app/record/gene/Afu3g01640
https://fungidb.org/fungidb/app/record/gene/Afu2g16310
https://fungidb.org/fungidb/app/record/gene/Afu2g17860
https://fungidb.org/fungidb/app/record/gene/Afu2g17895
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Figure 11. Multiple transcription factors in A. fumigatus whose evolution differs with respect to 

pathogenicity affect virulence in the greater wax moth model of disease. 

Cumulative survival of G. mellonella larvae inoculated with phosphate buffered saline (control; 

black), asexual spores of the parental strain CEA17 (white), and asexual spores from null 

mutants of TFs whose evolution is associated with the observed differences 

in Aspergillus pathogenicity (various colors). Ten larvae were used per inoculation in all assays. 

Color scheme is the same as in Figure 10. All mutant survival curves shown here were 

statistically different (P < 0.008 in a Log-rank test) from the CEA17 survival curve. Mutants 

whose survival curves are shown in orange on average have more gene family members in 

pathogens, those in yellow have on average more family members in A. fumigatus, and the 

mutant in purple is A. fumigatus-specific. Note that the results of the mutants in orange support 

the conserved pathogenicity model, whereas those of the mutants in yellow and purple support 

the species-specific pathogenicity model and that the mutants with orange and yellow survival 

curves did not exhibit a statistically significant different number of family members in our 

phylogenetically informed ANOVA (Supplementary Figure S2 from Mead et al., 2021). The 

Afu6g09630 gene is gliZ, a regulator of the biosynthesis of the secondary metabolite gliotoxin, a 

known modulator of host biology. 

 

Afu7g04890, and Afu2g00470) exhibited an increase in survival relative to CEA17 (Figure 

10A). Given that overall spore killing of all strains tested was greater than 90%, to independently 

confirm the increase in viability of these four mutants, we conducted predation assays with 

germlings. While germlings of many mutants showed a qualitative difference in survival relative 

to CEA17 (including three out of the four with statistically significant increases in viability 

during the spore predation assays), those differences were not statistically significant (Dunn’s 

Test adjusted p-value > 0.1). 

 

In the second assay, we measured virulence in the greater wax moth (Galleria mellonella) model 

of A. fumigatus disease. We found that almost one third of all knockout mutants tested (5/17) 

exhibited a statistically significant decrease in virulence (Figures 5 and S5 from Mead et al., 

2021). One of the transcription factor mutants that resulted in a significant decrease in larval 

killing was that of gliZ (Afu6g09630), a regulator of gliotoxin production (Bok et al., 2006) that 

we observed was found in all pathogenic taxa but missing in all non-pathogenic ones except A. 

https://fungidb.org/fungidb/app/record/gene/Afu7g04890
https://fungidb.org/fungidb/app/record/gene/Afu2g00470
https://fungidb.org/fungidb/app/record/gene/Afu6g09630
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cejpii and A. fischeri. To our knowledge, this is the first time gliZ has been tested in the greater 

wax moth model of fungal disease or shown to contribute to fungal pathogenesis. None of the 

other transcription factors whose mutants exhibited a decrease in virulence have previously been 

studied, and for three (Afu3g00210, Afu8g05750, and Afu7g00210) the only PFAM domain they 

contained was a “Fungal Zn(2)-Cys(6) binuclear cluster domain” (PF00172) while the other 

predicted transcription factor (Afu7g04890) contained both the binuclear cluster domain and a 

“Fungal specific transcription factor domain” (PF04082). In summary, the data from both 

functional assays suggest that genes whose evolution differs between pathogens and non-

pathogens are likely to contribute to disease-related traits. 

 

Discussion 

Our examination of Aspergillus genes whose evolution is associated with the observed 

differences in pathogenicity among section Fumigati taxa identified candidate genes that support 

the conserved pathogenicity model as well as candidates that support the species-specific 

pathogenicity model. Our results also show that previously described virulence-related genes are 

largely present in both pathogens and non-pathogens (Figure 8A), suggesting that most known 

genetic determinants of virulence are not likely to explain the observed pathogenicity differences 

between Aspergillus species. 

 

Multiple transcription factors we identified as having virulence-related genomic traits also 

displayed roles in different virulence-related assays (Figures 10 and 11). All four spore mutants 

that were significant in the amoeba predation assays showed increased viability compared to the 

control strain. Survival differences in the presence of a phagocytic predator can occur at several 

https://fungidb.org/fungidb/app/record/gene/Afu3g00210
https://fungidb.org/fungidb/app/record/gene/Afu8g05750
https://fungidb.org/fungidb/app/record/gene/Afu7g00210
https://pfam.xfam.org/family/PF00172
https://fungidb.org/fungidb/app/record/gene/Afu7g04890
https://pfam.xfam.org/family/PF04082


82  

levels, such as recognition, uptake, or intracellular fate. It is possible that a mutant that has 

acquired an advantage against a phagocyte has a trade off in the complex environment of the 

host. For example, modified cell surface components may allow escape from recognition by a 

phagocyte, but also result in better adhesion to surface structures in the host. Mutants of 

Cryptococcus, another fungal pathogen of humans, can undergo filamentation and then survive 

better against amoebae, but in the host the increase in filamentation results in a decrease in 

virulence due to a reduction of fungal dissemination (Magditch et al., 2012). It is possible that 

some of the A. fumigatus mutants have a slightly extended resting stage and thus escape the 

predator over the limited time of the assay (dormant wildtype spores are inert to the amoebae 

(Ferling et al., 2020)). We observed no major differences in growth between the mutants and the 

wildtype strain (Figure S3 from Mead et al., 2021), but these resting stage effects may be very 

small, and much is still unknown regarding how they may impact pathogenicity. In addition, our 

amoeba predation assays measure one or a few events during disease progression, namely 

phagocytic cell interactions, but the greater wax moth model tested the entirety of disease 

progression in a susceptible host; those results showed the expected outcome of decreased 

virulence in the knockout mutants. 

 

Of the eight transcription factors whose null mutants exhibited at least one phenotype in our two 

assays, half of them (including one of the genes, Afu2g17860, whose mutant increased viability 

of spores in the amoeba predation assay) were downregulated and none were upregulated during 

the switch to human body temperature (Lind et al., 2016). Additionally, gliZ, a regulator of 

gliotoxin production whose gene family we found to be largely pathogen-specific and whose 

mutant was less virulent than the WT strain, was heavily upregulated in A. fumigatus germlings 

https://fungidb.org/fungidb/app/record/gene/Afu2g17860
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that were extracted 12-14 hours after mouse infection (McDonagh et al., 2008) while the seven 

other TFs we studied were not differentially regulated during the early events of mouse infection. 

Taken together, our functional assays show that our evolutionary genomic approach is useful for 

uncovering the molecular mechanisms underpinning the evolution of pathogenicity and also has 

the power to identify genes both previously connected to A. fumigatus virulence in addition to 

novel ones. 

 

We analyzed all sequenced species in section Fumigati (as of July 2019) and a representative 

sampling of strains from A. fumigatus, carried out a diverse set of evolutionary genomic 

analyses, and functionally tested our identified genes in multiple assays, thus building on 

previous studies that used smaller numbers of section Fumigati species and close relatives in 

Aspergillus and focused on strict gene presence/absence (Fedorova et al., 2008; Mead et al., 

2019a). Previous work also compared A. novofumigatus, one of the section Fumigati species we 

considered here, to its relative A. fumigatus (Kjærbølling et al., 2018), and while that study used 

a broader and less stringent list of virulence-related genes that also included allergens, they also 

saw high levels of gene conservation between the two species. This previous work and our own 

support the hypothesis that A. novofumigatus could be nearly as pathogenic as A. fumigatus due 

to this conservation of almost all virulence-related genes. In section Flavi, another taxonomic 

section in genus Aspergillus that contains the human and plant pathogen Aspergillus flavus, it has 

been hypothesized that transcription factors may be linked to pathogenicity (Kjærbølling et al., 

2020), and similarly, we saw that one of the 72 A. fumigatus-specific genes we identified is a 

transcription factor whose deletion reduces virulence in our invertebrate model of fungal disease 

(Figure 11). 
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As more genomes from strains and species in section Fumigati become available, our power to 

detect quantitative differences will increase, and allow us to more robustly test the conserved 

pathogenicity model and expand our species-specific pathogenicity model to include “strain-

specific” elements. This will be especially important considering the continued and growing 

appreciation for strain-specific traits and differences in Aspergillus genomes and pathogenicity 

(Keller, 2017; Ries et al., 2019; Bastos et al., 2020b; dos Santos et al., 2020b; Kjærbølling et al., 

2020; Steenwyk et al., 2020d, 2020c; Kowalski et al., 2021). Similarly, we recognize that it is 

unlikely that all of the A. fumigatus-specific genes (Figure 2B) or genomic attributes (Figure 3) 

we discovered may be directly connected to pathogenicity but may instead be connected to other 

A. fumigatus-specific traits. This caveat notwithstanding, these A. fumigatus-specific genes 

constitute a useful list of targets for beginning to understand why A. fumigatus evolved to be 

pathogenic whereas its closest relatives did not. Future studies will also place A. 

oerlinghausenensis, another species closely related to A. fumigatus (Houbraken et al., 2016), 

within this evolutionary framework of pathogenicity, but based on our recent genome-wide 

phylogenomic analyses of A. oerlinghausenensis, A. fischeri, and A. fumigatus (Steenwyk et al., 

2020d), we do not anticipate that inclusion of A. oerlinghausenensis will drastically change our 

findings. 

 

The strains whose genomes we analyzed were isolated from both environmental and clinical 

locations (Table S1 from Mead et al., 2021), and based on published literature, we do not 

anticipate isolate setting to play a large role or confound our results analyzing pathogens and 

non-pathogens. For example, previous work (Ashu et al., 2017) reported that the ecological niche 
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of A. fumigatus strains (including whether or not they were isolated from the clinic or 

environment) contributed a very small but statistically significant amount to the overall amounts 

of observed diversity between 2,026 isolates. This suggests that the environmental and clinical 

strains used in our study are likely representative of A. fumigatus strain diversity. Furthermore, 

consistent with our results (Figure 2A), Puértolas-Balint et al. (Puértolas-Balint et al., 2019) 

reported, using their own set of virulence-related genes, that both clinical and environmental 

strains of A. fumigatus have similar “virulence genetic content”.  

 

In general, it appears that clinical isolates of A. fumigatus are slightly more pathogenic than 

environmental isolates (Mondon et al., 1996; Alshareef and Robson, 2014), perhaps due to 

within-host microevolution of clinical isolates, but this issue is still under active investigation in 

the field. For example, Kowalski et al. (Kowalski et al., 2016) showed that on average, clinical 

strains are indeed slightly more pathogenic in their sample of A. fumigatus clinical and 

environmental strains, but the difference is relatively small compared to the heterogeneity of 

pathogenicity observed between A. fumigatus strains. We are unaware if the genomic traits and 

pathogenicity of environmental and clinical strains have been compared in species other than A. 

fumigatus. We are currently designing these experiments with these and other strains. 

 

Evolutionary studies have also been caried out in fungal pathogens outside of the genus 

Aspergillus, and when our results are placed in the context of this literature, a diverse set of 

mechanisms have driven the evolution of fungal pathogenicity (Taylor, 2015). The ability to 

infect humans has also evolved multiple times in Candida species found within the fungal 

subphylum Saccharomycotina (Gabaldón et al., 2016); however, gene family expansion and 
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interspecies hybridization were much more important for the evolution of pathogenicity in that 

clade (Butler et al., 2009) compared to the results we present here in section Fumigati where 

there was little evidence of dramatic changes in gene family member number between pathogens 

and non-pathogens (Figure S2 from Mead et al., 2021). Similarly, gene family size was 

hypothesized to be an important factor in the evolution of Coccidioides pathogens, and just as we 

only saw 84 genes with A. fumigatus-specific evolutionary rates, this group of pathogens had a 

relatively small number of genes with species-specific evolutionary rates (Sharpton et al., 2009). 

In pathogenic Cryptococcus species, mating-type loci and the switch from a tetrapolar to bipolar 

mating system have been suggested as being key in producing the genomic environment 

necessary for pathogenicity to evolve (Sun et al., 2019), but in A. fumigatus, mating-type loci do 

not appear to contribute to virulence (Losada et al., 2015) and the contribution of mating across 

section Fumigati has only rarely been studied (Rydholm et al., 2007). 

 

Worldwide mortality rates for aspergillosis infections are estimated to range from as high as 95% 

to as low as 30%, and drug resistance is a frequent worry for clinicians (Brown et al., 2012). To 

combat this global health issue, more must be understood about Aspergillus biology and 

evolution. Here, we showed how an evolutionary approach can guide the identification of 

pathogenicity-associated genetic elements in Aspergillus fungi, presented many promising, novel 

candidates for future study, and placed them within an evolutionary context that will also guide 

their study with relation to non-A. fumigatus pathogenic species found within section Fumigati. 

Our data also provide clues on how Aspergillus pathogenicity evolved through the contribution 

of genetic elements that fit both the conserved pathogenicity and species-specific pathogenicity 

models. Furthermore, genes that fit the conserved pathogenicity model may be useful as targets 
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for the treatment of disease caused by all section Fumigati species, whereas genes that fit the 

species-specific pathogenicity model may be useful for species-specific treatment strategies. 

More generally, this work provides the basis for an evolutionary framework that can inform 

multiple aspects of the study of both Aspergillus species and the diseases they cause. 
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CHAPTER 4 

Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of 

Virulence Across Aspergillus Species3 

 

Introduction 

Fungal diseases impose a clinical, economic, and social burden on humans (Drgona et al., 2014; 

Vallabhaneni et al., 2016; Benedict et al., 2019). Fungi from the genus Aspergillus are 

responsible for a considerable fraction of this burden, accounting for more than 250,000 

infections annually with high mortality rates (Bongomin et al., 2017). Aspergillus infections 

often result in pulmonary and invasive diseases that are collectively termed aspergillosis. Among 

Aspergillus species, Aspergillus fumigatus is the primary etiological agent of aspergillosis (Latgé 

and Chamilos, 2019).  

 

Even though A. fumigatus is a major pathogen, its closest relatives are not considered pathogenic 

(Mead et al., 2019a; Steenwyk et al., 2019c; Rokas et al., 2020a). Numerous studies have 

identified genetic determinants that contribute to A. fumigatus pathogenicity, such as the 

organism’s ability to grow well at higher temperatures and in hypoxic conditions (Kamei and 

Watanabe, 2005; Tekaia and Latgé, 2005; Abad et al., 2010; Grahl et al., 2012). Genetic 

determinants that contribute to pathogenicity could be conceived as analogous to individual 

“cards” of a “hand” (set of cards) in a card game – that is, individual determinants are typically  

 

3This work is published in: Steenwyk, J. L., Mead, M. E., Knowles, S. L., Raja, H. A., Roberts, 

C. D., Bader, O., et al. (2020). Variation Among Biosynthetic Gene Clusters, Secondary 

Metabolite Profiles, and Cards of Virulence Across Aspergillus Species. Genetics, 

genetics.303549.2020. doi:10.1534/genetics.120.303549. 
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insufficient to cause disease but can collectively do so (Casadevall, 2007). 

 

Aspergillus fumigatus biosynthesizes a cadre of secondary metabolites and several metabolites 

could be conceived as “cards” of virulence because of their involvement in impairing the host 

immune system, protecting the fungus from host immune cell attacks, or acquiring key nutrients 

(Shwab et al., 2007; Losada et al., 2009; Yin et al., 2013; Wiemann et al., 2014; Bignell et al., 

2016; Knox et al., 2016; Raffa and Keller, 2019; Blachowicz et al., 2020). For example, the 

secondary metabolite gliotoxin has been shown in A. fumigatus to inhibit the host immune 

response (Sugui et al., 2007; Spikes et al., 2008). Other secondary metabolites implicated in 

virulence include: fumitremorgin, which inhibits the activity of the breast cancer resistance 

protein (González-Lobato et al., 2010); verruculogen, which modulates the electrophysical 

properties of human nasal epithelial cells (Khoufache et al., 2007); trypacidin, which is cytotoxic 

to lung cells and inhibits phagocytosis (Gauthier et al., 2012; Mattern et al., 2015); pseurotin, 

which inhibits immunoglobulin E (Ishikawa et al., 2009); and fumagillin which causes epithelial 

cell damage (Guruceaga et al., 2018) and impairs the function of neutrophils (Fallon et al., 2010, 

2011).  

 

By extension, the metabolic pathways responsible for the biosynthesis of secondary metabolites 

could also be conceived as components of these secondary metabolism-associated “cards” of 

virulence. Genes in these pathways are typically organized in contiguous sets termed 

biosynthetic gene clusters (BGCs) (Keller, 2019). BGCs are known to evolve rapidly, and their 

composition can differ substantially across species and strains (Lind et al., 2015, 2017; de Vries 
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et al., 2017; Kjærbølling et al., 2018, 2020; Rokas et al., 2018, 2020b; Vesth et al., 2018). For 

example, even though A. fumigatus contains 33 BGCs and A. fischeri contains 48 BGCs, only 10 

of those BGCs appear to be shared between the two species (Mead et al., 2019a). Interestingly, 

one of the BGCs that is conserved between A. fumigatus and A. fischeri is the gliotoxin BGC and 

both species have been shown to biosynthesize the secondary metabolite, albeit at different 

amounts (Knowles et al., 2020). These results suggest that the gliotoxin “card” is part of a 

winning “hand” that facilitates virulence only in the background of the major pathogen A. 

fumigatus and not in that of the nonpathogen A. fischeri (Knowles et al., 2020).  

 

To date, such comparisons of BGCs and secondary metabolite profiles among A. fumigatus and 

closely related nonpathogenic species have been few and restricted to single strains (Mead et al., 

2019a; Knowles et al., 2020). However, genetic and phenotypic heterogeneity among strains of a 

single species is an important consideration when studying Aspergillus pathogenicity (Kowalski 

et al., 2016; Keller, 2017; Kowalski et al., 2019; Ries et al., 2019; Bastos et al., 2020b; 

Blachowicz et al., 2020; dos Santos et al., 2020b; Drott et al., 2020; Steenwyk et al., 2020c). 

Examination of multiple strains of A. fumigatus and close relatives—including the recently 

described closest known relative of A. fumigatus, A. oerlinghausenensis, whose virulence has yet 

to be examined but which is not thought to be a human pathogen (Houbraken et al., 2016) and 

has never been associated with human infections—will increase our understanding of the A. 

fumigatus secondary metabolism-associated “cards” of virulence. 

 

To gain insight into the genomic and chemical similarities and differences in secondary 

metabolism among A. fumigatus and nonpathogenic close relatives, we characterized variation in 
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BGCs and secondary metabolites produced by A. fumigatus and nonpathogenic close relatives. 

To do so, we first sequenced and assembled A. oerlinghausenensis CBS 139183T as well as A. 

fischeri strains NRRL 4585 and NRRL 4161 and analyzed them together with four A. fumigatus 

and three additional A. fischeri publicly available genomes. We also characterized the secondary 

metabolite profiles of three A. fumigatus, one A. oerlinghausenensis, and three A. fischeri strains. 

We observed both variation and conservation among species- and strain-level BGCs and 

secondary metabolites. We found that the biosynthesis of the secondary metabolites gliotoxin 

and fumitremorgin, which are both known to interact with mammalian cells (Yamada et al., 

2000; González-Lobato et al., 2010; Li et al., 2012; Raffa and Keller, 2019), as well as their 

BGCs, were conserved among pathogenic and nonpathogenic strains. Interestingly, we found 

only A. fischeri strains, but not A. fumigatus strains, biosynthesized verruculogen, which changes 

the electrophysical properties of human nasal epithelial cells (Khoufache et al., 2007). Similarly, 

we found that both A. fumigatus and A. oerlinghausenensis biosynthesized fumagillin and 

trypacidin, whose effects include broad suppression of the immune response system and lung cell 

damage (Ishikawa et al., 2009; Fallon et al., 2010, 2011; Gauthier et al., 2012), but A. fischeri did 

not. Taken together, these results reveal that nonpathogenic close relatives of A. fumigatus also 

produce some, but not all, of the secondary metabolism-associated cards of virulence known in 

A. fumigatus. Further investigation of the similarities and differences among A. fumigatus and 

close nonpathogenic relatives may provide additional insight into the “hand of cards” that 

enabled A. fumigatus to evolve into a deadly pathogen. 
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Materials and Methods 

Strain acquisition, DNA extraction, and sequencing 

Two strains of Aspergillus fischeri (NRRL 4161 and NRRL 4585) were acquired from the 

Northern Regional Research Laboratory (NRRL) at the National Center for Agricultural 

Utilization Research in Peoria, Illinois, while one strain of Aspergillus oerlinghausenensis (CBS 

139183T) was acquired from the Westerdijk Fungal Biodiversity Institute, Utrecht, The 

Netherlands. These strains were grown in 50 ml of liquid yeast extract soy peptone dextrose 

(YESD) medium. After approximately seven days of growth on an orbital shaker (100 rpm) at 

room temperature, the mycelium was harvested by filtering the liquid media through a 

Corning®, 150 ml bottle top, 0.22µm sterile filter and washed with autoclaved distilled water. 

All subsequent steps of DNA extraction from the mycelium were performed following protocols 

outlined previously (Mead et al., 2019b). The genomic DNA from these three strains was 

sequenced using a NovaSeq S4 at the Vanderbilt Technologies for Advanced Genomes facility 

(Nashville, Tennessee, US) using paired-end sequencing (150 bp) strategy with the Illumina 

TruSeq library kit. 

 

Genome assembly, quality assessment, and annotation 

To assemble and annotate the three newly sequenced genomes, we first quality-trimmed raw 

sequence reads using Trimmomatic, v0.36 (Bolger et al., 2014) using parameters described 

elsewhere (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10, leading:10, trailing:10, 

slidingwindow:4:20, minlen:50) (Steenwyk and Rokas, 2017). The resulting paired and unpaired 

quality-trimmed reads were used as input to the SPAdes, v3.11.1 (Bankevich et al., 2012), 

genome assembly algorithm with the ‘careful’ parameter and the ‘cov-cutoff’ set to ‘auto’.  
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We evaluated the quality of our newly assembled genomes, using metrics based on continuity of 

assembly and gene-content completeness. To evaluate genome assemblies by scaffold size, we 

calculated the N50 of each assembly (or the shortest contig among the longest contigs that 

account for 50% of the genome assembly’s length) (Yandell and Ence, 2012). To determine 

gene-content completeness, we implemented the BUSCO, v2.0.1 (Waterhouse et al., 2018a), 

pipeline using the ‘genome’ mode. In this mode, the BUSCO pipeline examines assembly 

contigs for the presence of near-universally single copy orthologous genes (hereafter referred to 

as BUSCO genes) using a predetermined database of orthologous genes from the OrthoDB, v9 

(Waterhouse et al., 2013). We used the OrthoDB database for Pezizomycotina (3,156 BUSCO 

genes). Each BUSCO gene is determined to be present in a single copy, as duplicate sequences, 

fragmented, or missing. Our analyses indicate the newly sequenced and assembled genomes have 

high gene-content completeness and assembly continuity (average percent presence of BUSCO 

genes: 98.80 ± 0.10%; average N50: 451,294.67 ± 9,696.11; Fig. S1 from Steenwyk et al., 

2020d). These metrics suggest these genomes are suitable for comparative genomic analyses.  

 

To predict gene boundaries in the three newly sequenced genomes, we used the MAKER, 

v2.31.10, pipeline (Holt and Yandell, 2011) which, creates consensus predictions from the 

collective evidence of multiple ab initio gene prediction software. Specifically, we created 

consensus predictions from SNAP, v2006-07-28 (Korf, 2004), and AUGUSTUS, v3.3.2 (Stanke 

and Waack, 2003), after training each algorithm individually on each genome. To do so, we first 

ran MAKER using protein evidence clues from five different publicly available annotations of 

Aspergillus fungi from section Fumigati. Specifically, we used protein homology clues from A. 
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fischeri NRRL 181 (GenBank accession: GCA_000149645.2), A. fumigatus Af293 (GenBank 

accession: GCA_000002655.1), Aspergillus lentulus IFM 54703 (GenBank accession: 

GCA_001445615.1), Aspergillus novofumigatus IBT 16806 (GenBank accession: 

GCA_002847465.1), and Aspergillus udagawae IFM 46973 (GenBank accession: 

GCA_001078395.1). The resulting gene predictions were used to train SNAP. MAKER was then 

rerun using the resulting training results. Using the SNAP trained gene predictions, we trained 

AUGUSTUS. A final set of gene boundary predictions were obtained by rerunning MAKER 

with the training results from both SNAP and AUGUSTUS. 

 

To supplement our data set of newly sequenced genomes, we obtained publicly available ones. 

Specifically, we obtained genomes and annotations for A. fumigatus Af293 (GenBank accession: 

GCA_000002655.1), A. fumigatus CEA10 (strain synonym: CBS 144.89 / FGSC A1163; 

GenBank accession: GCA_000150145.1), A. fumigatus HMR AF 270 GenBank accession: 

GCA_002234955.1), A. fumigatus Z5 (GenBank accession: GCA_001029325.1), A. fischeri 

NRRL 181 (GenBank accession: GCA_000149645.2). We also obtained assemblies of the 

recently published A. fischeri genomes for strains IBT 3003 and IBT 3007 (Zhao et al., 2019b) 

which, lacked annotations. We annotated the genome of each strain individually using MAKER 

with the SNAP and AUGUSTUS training results from a close relative of both strains, A. fischeri 

NRRL 4161. Altogether, our final data set contained a total of ten genome from three species: 

four A. fumigatus strains, one A. oerlinghausenensis strain, and five A. fischeri strains (Table 2).  
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Table 2. Species and strains used in the present study.  

Genus and species Strain 
Environmental/

Clinical 

Genomic 

analysis 

Secondary 

metabolite 

profiling 

Reference 

Aspergillus 

oerlinghausenensis 
CBS 139183T Environmental + + This study 

Aspergillus fischeri NRRL 4585 Environmental + + This study 

Aspergillus fischeri NRRL 4161 Unknown + + This study 

Aspergillus fischeri NRRL 181 Environmental + + 
(Fedorova et al., 

2008) 

Aspergillus fischeri IBT 3007 Environmental + - (Zhao et al., 2019b) 

Aspergillus fischeri IBT 3003 Environmental + - (Zhao et al., 2019b) 

Aspergillus 

fumigatus 
Af293 Clinical + + 

(Nierman et al., 

2005) 

Aspergillus 

fumigatus 

CEA10 / 

CEA17 
Clinical + + 

(Fedorova et al., 

2008) 

Aspergillus 

fumigatus 
HMR AF 270 Clinical + - 

BioSample: 

SAMN07177964 

Aspergillus 

fumigatus 
Z5 Environmental + - (Miao et al., 2015) 

‘+’ and ‘-’ indicate if BGCs and secondary metabolite profiling was conducted on a particular 

strain. More specifically ‘+’ indicates the strain was analyzed whereas ‘-’ indicates that the strain 

was not analyzed.

 
Maximum likelihood phylogenetics and Bayesian estimation of divergence times  

To reconstruct the evolutionary history among the ten Aspergillus genomes, we implemented a 

recently developed pipeline (Steenwyk et al., 2019c), which relies on the concatenation-approach 

to phylogenomics (Rokas et al., 2003) and has been successfully used in reconstructing species-

level relationships among Aspergillus and Penicillium fungi (Bodinaku et al., 2019; Steenwyk et 

al., 2019c). The first step in the pipeline is to identify single copy orthologous genes in the 
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genomes of interest which, are ultimately concatenated into a larger phylogenomic data matrix. 

To identify single copy BUSCO genes across all ten Aspergillus genomes, we used the BUSCO 

pipeline with the Pezizomycotina database as described above. We identified 3,041 BUSCO 

genes present at a single copy in all ten Aspergillus genomes and created multi-FASTA files for 

each BUSCO gene that contained the protein sequences for all ten taxa. The protein sequences of 

each BUSCO gene were individually aligned using Mafft, v7.4.02 (Katoh and Standley, 2013), 

with the same parameters as described elsewhere (Steenwyk et al., 2019c). Nucleotide sequences 

were then mapped onto the protein sequence alignments using a custom Python, v3.5.2 

(https://www.python.org/), script with BioPython, v1.7 (Cock et al., 2009a). The resulting 

codon-based alignments were trimmed using trimAl, v1.2.rev59 (Capella-Gutierrez et al., 2009), 

with the ‘gappyout’ parameter. The resulting trimmed nucleotide alignments were concatenated 

into a single matrix of 5,602,272 sites and was used as input into IQ-TREE, v1.6.11 (Nguyen et 

al., 2015). The best-fitting model of substitutions for the entire matrix was determined using 

Bayesian information criterion values (Kalyaanamoorthy et al., 2017). The best-fitting model 

was a general time-reversible model with empirical base frequencies that allowed for a 

proportion of invariable sites and a discrete Gamma model with four rate categories 

(GTR+I+F+G4) (Tavaré, 1986; Yang, 1994, 1996; Vinet and Zhedanov, 2011). To evaluate 

bipartition support, we used 5,000 ultrafast bootstrap approximations (Hoang et al., 2018).    

 

To estimate divergence times among the ten Aspergillus genomes, we used the concatenated data 

matrix and the resulting maximum likelihood phylogeny from the previous steps as input to 

Bayesian approach implemented in MCMCTree from the PAML package, v4.9d (Yang, 2007). 

First, we estimated the substitution rate across the data matrix using a “GTR+G” model of 

https://www.python.org/
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substitutions (model = 7), a strict clock model, and the maximum likelihood phylogeny rooted on 

the clade of A. fischeri strains. We imposed a root age of 3.69 million years ago according to 

results from recent divergence time estimates of the split between A. fischeri and A. fumigatus 

(Steenwyk et al., 2019c). We estimated the substitution rate to be 0.005 substitutions per one 

million years. Next, the likelihood of the alignment was approximated using a gradient and 

Hessian matrix. To do so, we used previously established time constraints for the split between 

A. fischeri and A. fumigatus (1.85 to 6.74 million years ago) (Steenwyk et al., 2019c). Lastly, we 

used the resulting gradient and Hessian matrix, the rooted maximum likelihood phylogeny, and 

the concatenated data matrix to estimate divergence times using a relaxed molecular clock 

(model = 2). We specified the substitution rate prior based on the estimated substitution rate 

(rgene_gamma = 1 186.63). The ‘sigma2_gamma’ and ‘finetune’ parameters were set to ‘1 4.5’ 

and ‘1’, respectively. To collect a high-quality posterior probability distribution, we ran a total of 

5.1 million iterations during MCMC analysis which, is 510 times greater than the minimum 

recommendations (Raftery and Lewis, 1995). Our sampling strategy across the 5.1 million 

iterations was to discard the first 100,000 results followed by collecting a sample every 500th 

iteration until a total of 10,000 samples were collected.   

 

Identification of gene families and analyses of putative biosynthetic gene clusters 

To identify gene families across the ten Aspergillus genomes, we used a Markov clustering 

approach. Specifically, we used OrthoFinder, v2.3.8 (Emms and Kelly, 2019). OrthoFinder first 

conducts a blast all-vs-all using the protein sequences of all ten Aspergillus genomes and NCBI’s 

Blast+, v2.3.0 (Camacho et al., 2009), software. After normalizing blast bit scores, genes are 

clustered into discrete orthogroups using a Markov clustering approach (van Dongen, 2000). We 
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clustered genes using an inflation parameter of 1.5. The resulting orthogroups were used proxies 

for gene families. 

 

To identify putative biosynthetic gene clusters (BGCs), we used the gene boundaries predictions 

from the MAKER software as input into antiSMASH, v4.1.0 (Weber et al., 2015). To identify 

homologous BGCs across the ten Aspergillus genomes, we used the software BiG-SCAPE, 

v20181005 (Navarro-Muñoz et al., 2020). Based on the Jaccard Index of domain types, sequence 

similarity among domains, and domain adjacency, BiG-SCAPE calculates a similarity metric 

between pairwise combinations of clusters where smaller values indicate greater BGC similarity. 

BiG-SCAPE’s similarity metric can then be used as an edge-length in network analyses of 

cluster similarity. We evaluated networks using an edge-length cutoff from 0.1-0.9 with a step of 

0.1 (Fig. S3 from Steenwyk et al., 2020d). We found networks with an edge-length cutoff of 0.4-

0.6 to be similar and based further analyses on a cutoff of 0.5. Because BiG-SCAPE inexplicably 

split the gliotoxin BGC of the A. fumigatus Af293 strain into two cluster families even though 

the BGC was highly similar to the gliotoxin BGCs of all other strains, we supplemented BiG-

SCAPE’s approach to identifying homologous BGCs with visualize inspection of microsyteny 

and blast-based analyses using NCBI’s BLAST+, v2.3.0 (Camacho et al., 2009) for BGCs of 

interest. Similar sequences in microsynteny analyses were defined as at least 100 bp in length, at 

least 30 percent similarity, and an expectation value threshold of 0.01. Lastly, to determine if any 

BGCs have been previously linked to secondary metabolites, we cross referenced BGCs and 

BGC families with those found in the MIBiG database (Kautsar et al., 2019) as well as 

previously published A. fumigatus BGCs (Table S2 from Steenwyk et al., 2020d). BGCs not 
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associated with secondary metabolites were considered to likely encode for unknown 

compounds. 

 

Identification and characterization of secondary metabolite production 

General experimental procedures 

The 1H NMR data were collected using a JOEL ECS-400 spectrometer, which was equipped 

with a JOEL normal geometry broadband Royal probe, and a 24-slot autosampler, and operated 

at 400 MHz. HRESIMS experiments utilized either a Thermo LTQ Orbitrap XL mass 

spectrometer or a Thermo Q Exactive Plus (Thermo Fisher Scientific); both were equipped with 

an electrospray ionization source. A Waters Acquity UPLC (Waters Corp.) was utilized for both 

mass spectrometers, using a BEH C18 column (1.7 m; 50 mm x 2.1 mm) set to a temperature of 

40oC and a flow rate of 0.3 ml/min. The mobile phase consisted of a linear gradient of CH3CN-

H2O (both acidified with 0.1% formic acid), starting at 15% CH3CN and increasing linearly to 

100% CH3CN over 8 min, with a 1.5 min hold before returning to the starting condition. The 

HPLC separations were performed with Atlantis T3 C18 semi-preparative (5 m; 10 x 250 mm) 

and preparative (5 m; 19 x 250 mm) columns, at a flow rate of 4.6 ml/min and 16.9 ml/min, 

respectively, with a Varian Prostar HPLC system equipped with a Prostar 210 pumps and a 

Prostar 335 photodiode array detector (PDA), with the collection and analysis of data using 

Galaxie Chromatography Workstation software. Flash chromatography was performed on a 

Teledyne ISCO Combiflash Rf 200 and monitored by both ELSD and PDA detectors.  

 

Chemical characterization 

To identify the secondary metabolites that were biosynthesized by A. fumigatus, A. 
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oerlinghausenensis, and A. fischeri, these strains were grown as large-scale fermentations to 

isolate and characterize the secondary metabolites. To inoculate oatmeal cereal media (Old 

fashioned breakfast Quaker oats), agar plugs from fungal stains grown on potato dextrose agar; 

difco (PDA) were excised from the edge of the Petri dish culture and transferred to separate 

liquid seed media that contained 10 ml YESD broth (2% soy peptone, 2% dextrose, and 1% yeast 

extract; 5 g of yeast extract, 10 g of soy peptone, and 10 g of D-glucose in 500 ml of deionized 

H2O) and allowed to grow at 23˚C with agitation at 100 rpm for three days. The YESD seed 

cultures of the fungi were subsequently used to inoculate solid-state oatmeal fermentation 

cultures, which were either grown at room temperature (approximately 23˚C under 12h 

light/dark cycles for 14 days), 30˚C, or 37˚C; all growths at the latter two temperatures were 

carried out in an incubator (VWR International) in the dark over four days. The oatmeal cultures 

were prepared in 250 ml Erlenmeyer flasks that contained 10 g of autoclaved oatmeal (10 g of 

oatmeal with 17 ml of deionized H2O and sterilized for 15–20 minutes at 121°C). For all fungal 

strains three flasks of oatmeal cultures were grown at all three temperatures, except for A. 

oerlinghausenensis (CBS 139183T) at room temperature and A. fumigatus (Af293) at 37˚C. For 

CBS 139183T, the fungal cultures were grown in four flasks, while for Af293 eight flasks were 

grown in total. The growths of these two strains were performed differently from the rest because 

larger amounts of extract were required in order to perform detailed chemical characterization.  

 

The cultures were extracted by adding 60 ml of (1:1) MeOH-CHCl3 to each 250 ml flask, 

chopping thoroughly with a spatula, and shaking overnight (~ 16 h) at ~ 100 rpm at room 

temperature. The culture was filtered in vacuo, and 90 ml CHCl3 and 150 ml H2O were added to 

the filtrate. The mixture was stirred for 30 min and then transferred to a separatory funnel. The 
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organic layer (CHCl3) was drawn off and evaporated to dryness in vacuo. The dried organic layer 

was reconstituted in 100 ml of (1:1) MeOH–CH3CN and 100 ml of hexanes, transferred to a 

separatory funnel, and shaken vigorously. The defatted organic layer (MeOH–CH3CN) was 

evaporated to dryness in vacuo. 

 

To isolate compounds, the defatted extract was dissolved in CHCl3, absorbed onto Celite 545 

(Acros Organics), and fractioned by normal phase flash chromatography using a gradient of 

hexane-CHCl3-MeOH. Aspergillus fischeri strain NRRL 181 was chemically characterized 

previously (Knowles et al., 2019; Mead et al., 2019a). A. fumigatus strain Af293, grown at 37°C, 

was subjected to a 12g column at a flow rate of 30 ml/min and 61.0 column volumes, which 

yielded four fractions. Fraction 2 was further purified via preparative HPLC using a gradient 

system of 30:70 to 100:0 of CH3CN-H2O with 0.1% formic acid over 40 min at a flow rate of 

16.9 ml/min to yield six subfractions. Subfractions 1, 2 and 5, yielded cyclo(L-Pro-L-Leu) (Li et 

al., 2008) (0.89 mg), cyclo(L-Pro-L-Phe) (Campbell et al., 2009) (0.71 mg), and 

monomethylsulochrin (Ma et al., 2004) (2.04 mg), which eluted at approximately 5.7, 6.3, and 

10.7 min, respectively. Fraction 3 was further purified via preparative HPLC using a gradient 

system of 40:60 to 65:35 of CH3CN-H2O with 0.1% formic acid over 30 min at a flow rate of 

16.9 ml/min to yield four subfractions. Subfractions 1 and 2 yielded pseurotin A (Wang et al., 

2011) (12.50 mg) and bisdethiobis(methylthio)gliotoxin (Afiyatullov et al., 2005) (13.99 mg), 

which eluted at approximately 7.5 and 8.0 min, respectively.  

 

A. fumigatus strain CEA10, grown at 37°C, was subjected to a 4g column at a flow rate of 18 

ml/min and 90.0 column volumes, which yielded five fractions. Fraction 1 was purified via 
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preparative HPLC using a gradient system of 50:50 to 100:0 of CH3CN-H2O with 0.1% formic 

acid over 45 min at a flow rate of 16.9 ml/min to yield eight subfractions. Subfraction 1, yielded 

fumagillin (Halász et al., 2000) (1.69 mg), which eluted at approximately 18.5 min. Fraction 2 

was purified via semi-preparative HPLC using a gradient system of 35:65 to 80:20 of CH3CN-

H2O with 0.1% formic acid over 30 min at a flow rate of 4.6 ml/min to yield 10 subfractions. 

Subfraction 5 yielded fumitremorgin C (Kato et al., 2009) (0.25 mg), which eluted at 

approximately 15.5 min. Fraction 3 was purified via preparative HPLC using a gradient system 

of 40:60 to 100:0 of CH3CN-H2O with 0.1% formic acid over 30 min at a flow rate of 16.9 

ml/min to yield nine subfractions. Subfraction 2 yielded pseurotin A (1.64 mg), which eluted at 

approximately 7.3 min. 

 

Aspergillus oerlinghausenensis strain CBS 139183T, grown at RT, was subjected to a 4g column 

at a flow rate of 18 ml/min and 90 column volumes, which yielded 4 fractions. Fraction 3 was 

further purified via preparative HPLC using a gradient system of 35:65 to 70:30 of CH3CN-H2O 

with 0.1% formic acid over 40 min at a flow rate of 16.9 ml/min to yield 11 subfractions. 

Subfractions 3 and 10 yielded spiro [5H,10H-dipyrrolo[1,2-a:1′,2′-d]pyrazine-2-(3H),2′-

[2H]indole]-3′,5,10(1′H)-trione (Wang et al., 2008) (0.64 mg) and helvolic acid (Zhao et al., 

2010) (1.03 mg), which eluted at approximately 11.5 and 39.3 min, respectively. (see NMR 

supporting information; figshare: 10.6084/m9.figshare.12055503). 

 

Metabolite profiling by mass spectrometry  

The metabolite profiling by mass spectrometry, also known as dereplication, was performed as 

stated previously (El-Elimat et al., 2013). Briefly, ultraperformance liquid chromatography-
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photodiode array-electrospray ionization high resolution tandem mass spectrometry (UPLC-

PDA-HRMS-MS/MS) was utilized to monitor for secondary metabolites across all strains 

(Af293, CEA10, CEA17, CBS 139183T, NRRL 181, NRRL 4161, and NRRL 4585). Utilizing 

positive-ionization mode, ACD MS Manager with add-in software IntelliXtract (Advanced 

Chemistry Development, Inc.; Toronto, Canada) was used for the primary analysis of the UPLC-

MS chromatograms. The data from 19 secondary metabolites are provided in the Supporting 

Information (see Dereplication table; figshare: 10.6084/m9.figshare.12055503), which for each 

secondary metabolite lists: molecular formula, retention time, UV-absorption maxima, high-

resolution full-scan mass spectra, and MS-MS data (top 10 most intense peaks). 

 

Metabolomics analyses 

Principal component analysis (PCA) analysis was performed on the UPLC-MS data. Untargeted 

UPLC-MS datasets for each sample were individually aligned, filtered, and analyzed using 

MZmine 2.20 software (https://sourceforge.net/projects/mzmine/) (Pluskal et al., 2010). Peak 

detection was achieved using the following parameters, A. fumigatus at (Af293, CEA10, and 

CEA17): noise level (absolute value), 1×106; minimum peak duration, 0.05 min; m/z variation 

tolerance, 0.05; and m/z intensity variation, 20%; A. fischeri (NRRL 181, NRRL 4161, and 

NRRL 4585): noise level (absolute value), 1×106; minimum peak duration, 0.05 min; m/z 

variation tolerance, 0.05; and m/z intensity variation, 20%; and all strains (Af293, CEA10, 

CEA17, CBS 139183T, NRRL 181, NRRL 4161, and NRRL 4585): noise level (absolute value), 

7×105; minimum peak duration, 0.05 min; m/z variation tolerance, 0.05; and m/z intensity 

variation, 20%. Peak list filtering and retention time alignment algorithms were used to refine 

peak detection. The join algorithm integrated all sample profiles into a data matrix using the 

https://sourceforge.net/projects/mzmine/
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following parameters: m/z and retention time balance set at 10.0 each, m/z tolerance set at 0.001, 

and RT tolerance set at 0.5 mins. The resulting data matrix was exported to Excel (Microsoft) for 

analysis as a set of m/z – retention time pairs with individual peak areas detected in triplicate 

analyses. Samples that did not possess detectable quantities of a given marker ion were assigned 

a peak area of zero to maintain the same number of variables for all sample sets. Ions that did not 

elute between 2 and 8 minutes and/or had an m/z ratio less than 200 or greater than 800 Da were 

removed from analysis. Relative standard deviation was used to understand the quantity of 

variance between the technical replicate injections, which may differ slightly based on 

instrument variance. A cutoff of 1.0 was used at any given m/z – retention time pair across the 

technical replicate injections of one biological replicate, and if the variance was greater than the 

cutoff, it was assigned a peak area of zero. Final chemometric analysis, data filtering (Caesar et 

al., 2018) and PCA was conducted using Sirius, v10.0 (Pattern Recognition Systems AS) 

(Kvalheim et al., 2011), and dendrograms were created with Python. The PCA scores plots were 

generated using data from either the three individual biological replicates or the averaged 

biological replicates of the fermentations. Each biological replicate was plotted using averaged 

peak areas obtained across four replicate injections (technical replicates). 

 

Data Availability 

Sequence reads and associated genome assemblies generated in this project are available in 

NCBI’s GenBank database under the BioProject PRJNA577646. Additional descriptions of the 

genomes including predicted gene boundaries are available through Figshare (doi: 

10.6084/m9.figshare.12055503). The Figshare repository is also populated with other data 

generated from genomic and natural products analysis. Among genomic analyses, we provide 
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information about predicted BGCs, results associated with network-based clustering of BGCs 

into cluster families, phylogenomic data matrices, and trees. Among natural products analysis, 

we provide information that supports methods and results, including NMR spectra.  

 

 

Results 

Conservation and diversity of biosynthetic gene clusters within and between species 

We sequenced and assembled A. oerlinghausenensis CBS 139183T and A. fischeri strains NRRL 

4585 and NRRL 4161. Together with publicly available genomes, we analyzed 10 Aspergillus 

genomes (five A. fischeri strains; four A. fumigatus strains; one A. oerlinghausenensis strain; see 

Methods). We found that the newly added genomes were of similar quality to other publicly 

available draft genomes (average percent presence of BUSCO genes: 98.80 ± 0.10%; average 

N50: 451,294.67 ± 9,696.11; Fig. S1 from Steenwyk et al., 2020d). We predicted that A. 

oerlinghausenensis CBS 139183T, A. fischeri NRRL 4585, and A. fischeri NRRL 4161 have 

10,044, 11,152 and 10,940 genes, respectively, numbers similar to publicly available genomes. 

Lastly, we inferred the evolutionary history of the 10 Aspergillus genomes using a concatenated 

matrix of 3,041 genes (5,602,272 sites) and recapitulated species-level relationships as 

previously reported (Houbraken et al., 2016). Relaxed molecular clock analyses suggested that A. 

oerlinghausenensis CBS 139183T diverged from A. fumigatus approximately 3.9 (6.4 – 1.3) 

million years ago and that A. oerlinghausenensis and A. fumigatus split from A. fischeri 

approximately 4.5 (6.8 – 1.7) million years ago (Fig. 12A; Fig. S2 from Steenwyk et al., 2020d). 
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Figure 12. Diverse genetic repertoire of biosynthetic gene clusters and extensive presence and 

absence polymorphisms between and within species. 

(A) Genome-scale phylogenomic analysis confirms A. oerlinghausenensis is the closest relative 

to A. fumigatus. Relaxed molecular clock analyses suggest A. fumigatus, A. oerlinghausenensis, 

and A. fischeri diverged from one another during the Neogene geologic period. Bipartition 

support is depicted for internodes that did not have full support. (B) A. fumigatus harbors the 

lowest number of BGCs compared to its two closest relatives. (C) Network-based clustering of 

BGCs into cluster families reveal extensive cluster presence and absence polymorphisms 

between species and strains. Cluster family identifiers are depicted on the x-axis; the number of 

strains represented in a cluster family are shown on the y-axis; the colors refer to a single strain 

from each species. Genus and species names are written using the following 

abbreviations: Afum, A. fumigatus; Aoer, A. oerlinghausenensis; Afis, A. fischeri. Classes of 
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BGCs are written using the following abbreviations: NRPS, nonribosomal peptide synthetase; 

T1PKS, type I polyketide synthase; Hybrid, a combination of multiple BGC classes. 

 

 

Examination of the total number of predicted BGCs revealed that A. fischeri has the largest BGC 

count. Among A. fumigatus, A. oerlinghausenensis, and A. fischeri, we predicted an average of 

35.75 ± 2.22, 40, 50.80 ± 2.17 BGCs, respectively, and found they spanned diverse biosynthetic 

classes (e.g., polyketides, non-ribosomal peptides, terpenes, etc.) (Fig. 12B). Network-based 

clustering of BGCs into cluster families (or groups of homologous BGCs) resulted in 

qualitatively similar networks when we used moderate similarity thresholds (or edge cut-off 

values; Fig. S3A from Steenwyk et al., 2020d). Using a (moderate) similarity threshold of 0.5, 

we inferred 88 cluster families of putatively homologous BGCs (Fig. 12C).  

 

Examination of BGCs revealed extensive presence and absence polymorphisms within and 

between species. We identified 17 BGCs that were present in all 10 Aspergillus genomes 

including the hexadehydroastechrome (HAS) BGC (cluster family 311 or CF311), the 

neosartoricin BGC (CF61), and other putative BGCs likely encoding unknown products (Fig. 

S3B from Steenwyk et al., 2020d; Table S1 from Steenwyk et al., 2020d; data available from 

figshare, doi: 10.6084/m9.figshare.12055503). In contrast, we identified 18 BGCs found in 

single strains, which likely encode unknown products. Between species, similar patterns of 

broadly present and species-specific BGCs were observed. For example, we identified 18 BGCs 

that were present in at least one strain across all species; in contrast, A. fumigatus, A. 

oerlinghausenensis, and A. fischeri had 16, 8, and 27 BGCs present in at least one strain but 
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absent from the other species, respectively. These results suggest each species has a largely 

distinct repertoire of BGCs.  

 

Examination of shared BGCs across species revealed A. oerlinghausenensis CBS139183T and A. 

fischeri shared more BGCs with each other than either did with A. fumigatus. Surprisingly, we 

found ten homologous BGCs between A. oerlinghausenensis CBS 139183T and A. fischeri but 

only three homologous BGCs shared between A. fumigatus and A. oerlinghausenensis CBS 

139183T (Fig. 13A; Fig. S3C) even though A. oerlinghausenensis is more closely related to A. 

fumigatus than to A. fischeri (Fig. 12A). BGCs shared by A. oerlinghausenensis CBS 139183T 

and A. fischeri were uncharacterized while BGCs present in both A. fumigatus and A. 

oerlinghausenensis CBS 139183T included those that encode fumigaclavine and 

fumagillin/pseurotin. Lastly, to associate each BGC with a secondary metabolite in A. fumigatus 

Af293, we cross referenced our list with a publicly available one (Table S2 from Steenwyk et al., 

2020d) (Lind et al., 2017). Importantly, all known A. fumigatus Af293 BGCs were represented in 

our analyses. 

 

At the level of gene families, there were few species-specific gene families in A. 

oerlinghausenensis (Fig. 2B). A. oerlinghausenensis CBS 139183T has only eight species-

specific gene families, whereas A. fischeri and A. fumigatus have 1,487 and 548 species-specific 
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Figure 13. Aspergillus oerlinghausenensis shares more gene families and BGCs with A. fischeri 

than A. fumigatus. 

(A) Euler diagram showing species-level shared BGCs. (B) Euler diagram showing species-level 

shared gene families. In both diagrams, A. oerlinghausenensis shares more gene families or 

BGCs with A. fischeri than A. fumigatus despite a closer evolutionary relationship. The Euler 

diagrams show the results for the species-level comparisons, which may be influenced by the 

unequal numbers of strains used for the three species; strain-level comparisons of BGCs and 

gene families can be found in Figures 12C and S4 from Steenwyk et al., 2020d, respectively.

 
gene families, respectively. Examination of the best BLAST hits of the eight species-specific 

gene families suggest that most are hypothetical or uncharacterized fungal genes. To determine if 

the eight A. oerlinghausenensis CBS 139183T specific gene families were an artifact of using a 

single representative strain, we conducted and additional ortholog clustering analysis using a 

single strain of A. fischeri (NRRL 181), a single strain of A. fumigatus (Af293), or a single strain 

of each species (CBS 139183, NRRL 181, Af293). When using a single strain of A. fischeri or A. 

fumigatus, there were 23 or six gene families unique to each species, respectively. Therefore, the 

low number of A. oerlinghausenensis-specific gene families likely stems from our use of the 

genome of a single strain. 
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Despite a closer evolutionary relationship between A. oerlinghausenensis and A. fumigatus, we 

found A. oerlinghausenensis shares more gene families with A. fischeri than with A. fumigatus 

(685 and 109, respectively) suggestive of extensive gene loss in the A. fumigatus stem lineage. 

Lastly, we observed strain heterogeneity in gene family presence and absence within both A. 

fumigatus and A. fischeri (Fig. S4 from Steenwyk et al., 2020d). For example, the largest 

intersection that does not include all A. fischeri strains is 493 gene families, which were found in 

all but one strain, NRRL 181. For A. fumigatus, the largest intersection that does not include all 

strains is 233 gene families, which were shared by strains Af293 and CEA10. 

 

Within and between species variation in secondary metabolite profiles of A. fumigatus and 

its closest relatives 

To gain insight into variation in secondary metabolite profiles within and between species, we 

profiled A. fumigatus strains Af293, CEA10, and CEA17 (a pyrG1/URA3 derivative of CEA10), 

A. fischeri strains NRRL 181, NRRL 4585, and NRRL 4161, and A. oerlinghausenensis CBS 

139183T for secondary metabolites. Specifically, we used three different procedures, including 

the isolation and structure elucidation of metabolites, where possible, followed by two different 

metabolite profiling procedures that use mass spectrometry techniques. Altogether, we isolated 

and characterized 19 secondary metabolites; seven from A. fumigatus, two from A. 

oerlinghausenensis, and ten from A. fischeri (Fig. S5 from Steenwyk et al., 2020d). These 

products encompassed a wide diversity of secondary metabolite classes, such as those derived 

from polyketide synthases, non-ribosomal peptide-synthetases, terpene synthases and mixed 

biosynthesis enzymes.  
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To characterize the secondary metabolites biosynthesized that were not produced in high enough 

quantity for structural identification through traditional isolation methods, we employed 

“dereplication” mass spectrometry protocols specific to natural products research on all tested 

strains at both 30°C and 37°C (see supporting information, dereplication example; figshare: 

10.6084/m9.figshare.12055503) (El-Elimat et al., 2013; Ito and Masubuchi, 2014; Gaudêncio 

and Pereira, 2015; Hubert et al., 2017). We found that most secondary metabolites were present 

across strains of the same species (Table S3 from Steenwyk et al., 2020d); for example, 

monomethylsulochrin was isolated from A. fumigatus Af293, but through metabolite profiling, 

its spectral features were noted also in A. fumigatus strains CEA10 and CEA17. We identified 

metabolites that were biosynthesized by only one species; for example, pseurotin A was solely 

present in A. fumigatus strains. Finally, we found several secondary metabolites that were 

biosynthesized across species, such as fumagillin, which was biosynthesized by A. fumigatus and 

A. oerlinghausenensis, and fumitremorgin B, which was biosynthesized by strains of both A. 

oerlinghausenensis and A. fischeri. Together, these analyses suggest that closely related 

Aspergillus species and strains exhibit variation both within as well as between species in the 

secondary metabolites produced.  

 

To further facilitate comparisons of secondary metabolite profiles within and between species, 

we used the 1,920 features (i.e., unique m/z – retention time pairs) that were identified from all 

strains at all temperatures (Fig. 14A), to perform hierarchical clustering (Fig. 14B) and Principal 

Components Analysis (PCA) (Fig. S6 from Steenwyk et al., 2020d). Hierarchical clustering at 

37°C and 30°C indicated the chromatogram of A. oerlinghausenensis CBS 139183T is more 

similar to the chromatogram of A. fischeri than to that of A. fumigatus. PCA results were broadly 
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Figure 14. A. oerlinghausenensis and A. fischeri have more similar secondary metabolite profiles 

than A. fumigatus. 

(A) UPLC-MS chromatograms of secondary metabolite profiles of A. fumigatus and its closest 

relatives, A. oerlinghausenensis and A. fischeri at 37°C and 30°C (left and right, respectively). 

(B) Hierarchical clustering of chromatograms (1,920 total features) reveals A. 

oerlinghausenensis clusters with A. fischeri and not its closest relative, A. fumigatus at 37°C and 

30°C (left and right, respectively).  

 consistent with the clustering results, but suggested that A. oerlinghausenensis was just as 
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similar to A. fischeri strains as it was to A. fumigatus strains. This difference likely stems from 

the fact that hierarchical clustering is a total-evidence approach whereas PCA captures most but 

not all variance in the data (e.g., the two principal components in Fig. S6B and S6C from 

Steenwyk et al., 2020d capture 84.6% of the total variance). PCA analysis revealed greater 

variation in secondary metabolite production at 30°C compared to 37°C (Fig. S6 from Steenwyk 

et al., 2020d), suggesting there is a more varied response in how BGCs are being utilized at 

30°C. PCA at both 37°C and 30°C showed that variation between A. oerlinghausenensis CBS 

139183T and A. fischeri strains was largely captured along the second principal component; in 

contrast, the differences between A. oerlinghausenensis CBS 139183T and A. fumigatus strains 

are captured along the first principal component (Fig. S6D-E from Steenwyk et al., 2020d). 

Taken together, these results suggest that the three A. fischeri strains and A. oerlinghausenensis 

were the most chemically similar to each other. 

 

In summary, even though A. oerlinghausenensis is phylogenetically more closely related to A. 

fumigatus than to A. fischeri (Fig. 12A), our chemical analyses suggest that the secondary 

metabolite profile of A. oerlinghausenensis is more similar to the profile of A. fischeri than it is 

to the profile of A. fumigatus (Fig. 14B and S6B-E from Steenwyk et al., 2020d). The similarity 

of secondary metabolite profiles of A. oerlinghausenensis and A. fischeri is consistent with our 

finding that the genome of A. oerlinghausenensis shares higher numbers of BGCs and gene 

families with A. fischeri than with A. fumigatus (Fig. 13). The broad clustering patterns in 

secondary metabolite-based plots (Fig. S6B-E from Steenwyk et al., 2020d) are less robust than, 

but consistent with, those of BGC-based plots (Fig. S6A from Steenwyk et al., 2020d), 
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suggesting that the observed similarities in the secondary metabolism-associated genotypes of A. 

oerlinghausenensis and A. fischeri are likely reflected in their chemotypes.  

 

Conservation and divergence among biosynthetic gene clusters implicated in A. fumigatus 

pathogenicity 

Secondary metabolites are known to play a role in A. fumigatus virulence (Raffa and Keller, 

2019). We therefore conducted a focused examination of specific A. fumigatus BGCs and 

secondary metabolites that have been previously implicated in the organism’s ability to cause 

human disease (Table 3). We found varying degrees of conservation and divergence that were  

 

Table 3. Select A. fumigatus secondary metabolites implicated in modulating host biology  

 
Function 

Reference(

s) 

Evidence of biosynthetic gene cluster / secondary metabolite  

A. fumigatus 

A. 

oerlingha
usenensis 

A. fischeri 

Af293 CEA10 CEA17 
CBS 

139183T 

NRRL 

181 

NRRL 

4585 

NRRL 

4161 

Gliotoxin 

Inhibits host 

immune 

response  

(Sugui et 

al., 2007) 
+/+ +/+ +/+ +/+ +/+ +/+ +/+ 

Fumitremorgin 

Inhibits the 

breast cancer 

resistance 

protein  

(González-

Lobato et 

al., 2010) 

+/- +/+ +/- +/+ +/+ +/+ +/+ 

Verruculogen 

Changes 

electrophysical 

properties of 

human nasal 

epithelial cells  

(Khoufache 

et al., 

2007) 

+/- +/+ +/- +/+ +/+ +/+ +/+ 

Trypacidin 
Damages lung 

cell tissues 

(Gauthier 

et al., 

2012) 

+/+ +/+ +/- +/+ +/- -/- -/- 

Pseurotin 

Inhibits 

immunoglobulin 

E  

(Ishikawa 

et al., 

2009) 

+/+ +/+ +/+ +/+ -/- -/- -/- 
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Fumagillin 

Inhibits 

neutrophil 

function 

(Fallon et 

al., 2010, 

2011) 

+/+ +/+ +/+ +/+ -/- -/- -/- 

A list of select secondary metabolites implicated in human disease and their functional role are 

described here. All secondary metabolites listed or analogs thereof were identified during 

secondary metabolite profiling. Plus (+) and minus (-) signs indicate the presence or absence of 

the BGC and secondary metabolite, respectively. For example, +/+ indicates both BGC presence 

and evidence of secondary metabolite production, whereas +/- indicates BGC presence but no 

evidence of secondary metabolite production. ‘+/+’ cells are colored orange; ‘-/-’ cells are 

colored blue; ‘+/-’ and ‘-/+’ cells are colored green.  

 
associated with the absence or presence of a secondary metabolite. Among conserved BGCs that 

were also associated with conserved secondary metabolite production, we highlight the 

mycotoxins gliotoxin and fumitremorgin. Interestingly, we note that only A. fischeri strains 

synthesized verruculogen, a secondary metabolite that is implicated in human disease and is 

encoded by the fumitremorgin BGC (Khoufache et al., 2007; Kautsar et al., 2019). Among BGCs 

that exhibited varying degrees of sequence divergence and divergence in their production of the 

corresponding secondary metabolites, we highlight those associated with the production of the 

trypacidin and fumagillin/pseurotin secondary metabolites. We found that nonpathogenic close 

relatives of A. fumigatus produced some but not all mycotoxins, which provides novel insight 

into the unique cocktail of secondary metabolites biosynthesized by A. fumigatus. 

 

(i) Gliotoxin 

Gliotoxin is a highly toxic compound and known virulence factor in A. fumigatus (Sugui et al., 

2007). Nearly identical BGCs encoding gliotoxin are present in all pathogenic (A. fumigatus) and 

nonpathogenic (A. oerlinghausenensis and A. fischeri) strains examined (Fig. 15). Additionally, 

we found that all examined strains synthesized bisdethiobis(methylthio)gliotoxin a derivative 

from dithiogliotoxin, involved in the down-regulation of gliotoxin biosynthesis (Dolan et al., 

2014), one of the main mechanisms of gliotoxin resistance in A. fumigatus (Kautsar et al., 2019). 
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(ii) Fumitremorgin and Verruculogen 

Similarly, there is a high degree of conservation in the BGC that encodes fumitremorgin across 

all strains (Fig. 5). Fumitremorgins have known antifungal activity, are lethal to brine shrimp, 

 

 

Figure 15. Conservation in the gliotoxin BGC correlates with conserved production of gliotoxin 

analogs in A. fumigatus and nonpathogenic close relatives. 

Microsynteny analysis reveals a high degree of conservation in the BGC encoding gliotoxin 

across all isolates. The known gliotoxin gene cluster boundary is indicated above the A. 

fumigatus Af293 BGC. Black and white squares correspond to evidence or absence of evidence 

of secondary metabolite production, respectively. Genes are drawn as arrows with orientation 

indicated by the direction of the arrow. Gene function is indicated by gene color. Grey boxes 

between gene clusters indicate BLAST-based similarity of nucleotide sequences defined as being 

at least 100 bp in length, share at least 30% sequence similarity, and have an expectation value 

threshold of 0.01. Genus and species names are written using the following abbreviations: Afum: 

A. fumigatus; Aoer: A. oerlinghausenensis; Afis: A. fischeri. Below each genus and species 

abbreviation is the cluster family each BGC belongs to and their cluster number. 
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and are implicated in inhibiting mammalian proteins responsible for resistance to anticancer 

drugs in mammalian cells (Raffa and Keller, 2019). We found that conservation in the 

fumitremorgin BGC is associated with the production of fumitremorgins in all isolates examined. 

The fumitremorgin BGC is also responsible for the production of verruculogen, which is 

implicated to aid in A. fumigatus pathogenicity by changing the electrophysical properties of 

human nasal epithelial cells (Khoufache et al., 2007). Interestingly, we found that only A. 

fischeri strains produced verruculogen under the conditions we analyzed.   

 

(iii) Trypacidin 

Examination of the trypacidin BGC, which encodes a spore-borne and cytotoxic secondary 

metabolite, revealed a conserved cluster found in four pathogenic and nonpathogenic strains: A. 

fumigatus Af293, A. fumigatus CEA10, A. oerlinghausenensis CBS 139183T, and A. fischeri 

NRRL 181 (Fig. S7 from Steenwyk et al., 2020d). Furthermore, we found that three of these four 

isolates (except A. fischeri NRRL 181) biosynthesized a trypacidin analog, 

monomethylsulochrin. Examination of the microsynteny of the trypacidin BGC revealed that it 

was conserved across all four genomes with the exception A. fischeri NRRL l81, which lacked a 

RING (Really Interesting New Gene) finger gene. Interestingly, RING finger proteins can 

mediate gene transcription (Poukka et al., 2000). We confirmed the absence of the RING finger 

protein by performing a sequence similarity search with the A. fumigatus Af293 RING finger 

protein (AFUA_4G14620; EAL89333.1) against the A. fischeri NRRL 181 genome. In the 

homologous locus in A. fischeri, we found no significant BLAST hit for the first 23 nucleotides 

of the RING finger gene suggestive of pseudogenization. Taken together, we hypothesize that 

https://fungidb.org/fungidb/app/record/gene/Afu4g14620
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presence/absence polymorphisms or a small degree of sequence divergence between otherwise 

homologous BGCs may be responsible for the presence or absence of a toxic secondary 

metabolite in A. fischeri NRRL 181. Furthermore, inter- and intra-species patterns of trypacidin 

presence and absence highlight the importance of strain heterogeneity when examining BGCs. 

 

(iv) Fumagillin/pseurotin 

Examination of the intertwined fumagillin/pseurotin BGCs revealed that fumagillin has 

undergone substantial sequence divergence and that pseurotin is absent from strains of A. 

fischeri. The fumagillin/pseurotin BGCs are under the same regulatory control (Wiemann et al., 

2013) and biosynthesize secondary metabolites that cause cellular damage during host infection 

(fumagillin (Guruceaga et al., 2019)) and inhibit immunoglobulin E production (pseurotin 

(Ishikawa et al., 2009)). Microsynteny of the fumagillin BGC reveals high sequence 

conservation between A. fumigatus and A. oerlinghausenensis; however, sequence divergence 

was observed between A. oerlinghausenensis and A. fischeri (Fig. 16). Accordingly, fumagillin 

production was only observed in A. fumigatus and A. oerlinghausenensis and not in A. fischeri. 

Similarly, the pseurotin BGC is conserved between A. fumigatus and A. oerlinghausenensis. 

Rather than sequence divergence, no sequence similarity was observed in the region of the 

pseurotin cluster in A. fischeri, which may be due to an indel event. Accordingly, no pseurotin 

production was observed among A. fischeri strains. Despite sequence conservation between A. 

fumigatus and A. oerlinghausenensis, no evidence of pseurotin biosynthesis was observed in A. 

oerlinghausenensis, which suggests regulatory decoupling of the intertwined  
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Figure 16. Conservation and divergence in the locus encoding the fumitremorgin and intertwined 

fumagillin/pseurotin BGCs. 

Microsynteny analysis reveals conservation in the fumitremorgin BGC across all isolates. 

Interestingly, only A. fischeri strains synthesize verruculogen, a secondary metabolite also 

biosynthesized by the fumitremorgin BGC. In contrast, the intertwined fumagillin/pseurotin 

BGCs are conserved between A. fumigatus and A. oerlinghausenensis but divergent in A. 

fischeri. BGC conservation and divergence is associated with the presence and absence of a 

secondary metabolite, respectively. The same convention used in Fig. 4 is used to depict 

evidence of a secondary metabolite, represent genes and broad gene function, BGC sequence 

similarity, genus and species abbreviations, and BGC cluster families and cluster numbers. 

 

fumagillin/pseurotin BGC. Alternatively, the genes downstream of the A. fumigatus pseurotin 

BGC, which are absent from the A. oerlinghausenensis locus, may contribute to BGC production 

and could explain the lack of pseurotin production in A. oerlinghausenensis.  Altogether, these 

results show a striking correlation between sequence divergence and the production (or absence) 
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of secondary metabolites implicated in human disease among A. fumigatus and nonpathogenic 

closest relatives.  

 

Discussion 

Aspergillus fumigatus is a major fungal pathogen nested within a clade (known as section 

Fumigati) of at least 60 other species, the vast majority of which are nonpathogenic (Steenwyk et 

al., 2019c; Rokas et al., 2020a). Currently, it is thought that the ability to cause human disease 

evolved multiple times among species in section Fumigati (Rokas et al., 2020a). Secondary 

metabolites contribute to the success of the major human pathogen A. fumigatus in the host 

environment (Raffa and Keller, 2019) and can therefore be thought of as “cards” of virulence 

(Casadevall, 2007; Knowles et al., 2020). However, whether the closest relatives of A. fumigatus, 

A. oerlinghausenensis and A. fischeri, both of which are nonpathogenic, biosynthesize secondary 

metabolites implicated in the ability of A. fumigatus to cause human disease remained largely 

unknown. By examining genomic and chemical variation between and within A. fumigatus and 

its closest nonpathogenic relatives, we identified both conservation and divergence (including 

within species heterogeneity) in BGCs and secondary metabolite profiles (Fig. 12-16, S3, S5-8 

from Steenwyk et al., 2020d; Table 3, S1, S3 from Steenwyk et al., 2020d). Examples of 

conserved BGCs and secondary metabolites include the major virulence factor, gliotoxin (Fig. 

15), as well as several others (Fig. 16, S7 from Steenwyk et al., 2020d; Table 3, S1, S3 from 

Steenwyk et al., 2020d); examples of BGC and secondary metabolite heterogeneity or 

divergence include pseurotin, fumagillin, and several others (Fig. 16; Table 3, S1, S3 from 

Steenwyk et al., 2020d). Lastly, we found that the fumitremorgin BGC, which biosynthesizes 
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fumitremorgin in all three species, is also associated with verruculogen biosynthesis in A. 

fischeri strains (Fig. 16). 

 

One of the surprising findings of our study was that although A. oerlinghausenensis and A. 

fumigatus are evolutionarily more closely related to each other than to A. fischeri (Fig. 12), A. 

oerlinghausenensis and A. fischeri appear to be more similar to each other than to A. fumigatus in 

BGC composition, gene family content, and secondary metabolite profiles. The power of 

pathogen-nonpathogen comparative genomics is best utilized when examining closely related 

species (Fedorova et al., 2008; Jackson et al., 2011; Moran et al., 2011; Mead et al., 2019a; 

Rokas et al., 2020a). Genomes from additional strains from the closest known nonpathogenic 

relatives of A. fumigatus, including from the closest species relative A. oerlinghausenensis, A. 

fischeri, and other nonpathogenic species in section Fumigati will be key for understanding the 

evolution of A. fumigatus pathogenicity.  

 

Our finding that A. oerlinghausenensis and A. fischeri shares more gene families and BGCs with 

each other than they do with A. fumigatus (Fig. 12C, 13, S3, S4, S8 from Steenwyk et al., 2020d) 

suggests that the evolutionary trajectory of the A. fumigatus ancestor was marked by gene loss. 

We hypothesize that there were two rounds of gene family and BGC loss in the A. fumigatus 

stem lineage: (1) gene families and BGCs were lost in the common ancestor of A. fumigatus and 

A. oerlinghausenensis and (2) additional losses occurred in the A. fumigatus ancestor. In addition 

to losses, we note that 548 gene families and 16 BGCs are unique to A. fumigatus, which may 

have resulted from genetic innovation (e.g., de novo gene formation) or unique gene family and 

BGC retention (Fig. 13, S8 from Steenwyk et al., 2020d). In line with the larger number of 
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shared BGCs between A. oerlinghausenensis and A. fischeri, we found their secondary 

metabolite profiles were also more similar (Fig. 14, S6 from Steenwyk et al., 2020d). Notably, 

the evolutionary rate of the internal branch leading to the A. fumigatus common ancestor is much 

higher than those in the rest of the branches in our genome-scale phylogeny (Fig. S2B from 

Steenwyk et al., 2020d), suggesting that the observed gene loss and gene gain / retention events 

specific to A. fumigatus may be part of a wider set of evolutionary changes in the A. fumigatus 

genome. Analyses with a greater number of strains and species will help further test the validity 

of this hypothesis. More broadly, these results suggest that comparisons of the pathogen A. 

fumigatus against either the non-pathogen A. oerlinghausenensis (this manuscript) or the non-

pathogen A. fischeri ((Mead et al., 2019a; Knowles et al., 2020) and this manuscript) will both be 

instructive in understanding the evolution of A. fumigatus pathogenicity.  

 

When studying Aspergillus pathogenicity, it is important to consider any genetic and phenotypic 

heterogeneity between strains of a single species (Knox et al., 2016; Kowalski et al., 2016; 

Keller, 2017; Kowalski et al., 2019; Ries et al., 2019; Bastos et al., 2020b; Blachowicz et al., 

2020; dos Santos et al., 2020b; Drott et al., 2020; Steenwyk et al., 2020c). Our finding of strain 

heterogeneity among gene families, BGCs, and secondary metabolites in A. fumigatus and A. 

fischeri (Fig. 12-14, S3, S4, S6, S8 from Steenwyk et al., 2020d) suggests considerable strain-

level diversity in each species. For example, we found secondary metabolite profile strain 

heterogeneity was greater in A. fumigatus than A. fischeri (Fig. S6B-E from Steenwyk et al., 

2020d). These results suggest that strain-specific secondary metabolite profiles may play a role 

in variation of pathogenicity among A. fumigatus strains. In support of this hypothesis, 

differential secondary metabolite production has been associated with differences in virulence 
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among isolates of A. fumigatus (Blachowicz et al., 2020). More broadly, our finding supports the 

hypothesis that strain-level diversity is an important parameter when studying pathogenicity 

(Kowalski et al., 2016; Keller, 2017; Kowalski et al., 2019; Ries et al., 2019; Bastos et al., 

2020b; Blachowicz et al., 2020; dos Santos et al., 2020b; Drott et al., 2020; Steenwyk et al., 

2020c). 

 

Secondary metabolites contribute to A. fumigatus virulence through diverse processes including 

suppressing the human immune system and damaging tissues (Table 3). Interestingly, we found 

that the nonpathogens A. oerlinghausenensis and A. fischeri produced several secondary 

metabolites implicated in the ability of A. fumigatus human disease, such gliotoxin, trypacidin, 

verruculogen, and others (Fig. 15, 16, S7 from Steenwyk et al., 2020d; Table 3, S3 from 

Steenwyk et al., 2020d). Importantly, our work positively identified secondary metabolites for 

many structural classes implicated in a previous taxonomic study (Samson et al., 2007). These 

results suggest that several of the secondary metabolism-associated cards of virulence present in 

A. fumigatus are conserved in closely related nonpathogens (summarized in Fig. 17) as well as in 

closely related pathogenic species, such as A. novofumigatus (Kjærbølling et al., 2018).  
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Figure 17. Secondary metabolism-associated “cards” of virulence among A. fumigatus and close 

relatives. 

Secondary metabolites contribute to the “hand of cards”’ that enable A. fumigatus to cause 

disease. Here, we show that the nonpathogenic closest relatives of A. fumigatus possess a subset 

of the A. fumigatus secondary metabolism-associated cards of virulence. We hypothesize that the 

unique combination of cards of A. fumigatus contributes to its pathogenicity and that the cards in 

A. oerlinghausenensis and A. fischeri (perhaps in combination with other non-secondary-

metabolism-associated cards, such as thermotolerance) are insufficient to cause disease. 

Pathogenic and nonpathogenic species are shown in red and black, respectively. Cartoons of 

Aspergillus species were obtained from WikiMedia Commons (source: M. Piepenbring) and 

modified in accordance with the Creative Commons Attribution-Share Alike 3.0 Unported 

license (https://creativecommons.org/licenses/by-sa/3.0/deed.en).  

 

Interestingly, disrupting the ability of A. fumigatus to biosynthesize gliotoxin attenuates but does 

not abolish virulence (Sugui et al., 2007; Dagenais and Keller, 2009; Keller, 2017), whereas 

disruption of the ability of A. fischeri NRRL 181 to biosynthesize secondary metabolites, 

including gliotoxin, does not appear to influence virulence (Knowles et al., 2020). Our findings, 

https://creativecommons.org/licenses/by-sa/3.0/deed.en_
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together with previous studies, support the hypothesis that individual secondary metabolites are 

“cards” of virulence in a larger “hand” that A. fumigatus possesses.  
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CHAPTER 5 

Genomic and phenotypic analysis of COVID-19-associated pulmonary aspergillosis isolates 

of Aspergillus fumigatus4 

 

Introduction 

On March 11, 2020, the World Health Organization declared the ongoing pandemic caused by 

SARS-CoV-2, which causes COVID-19, a global emergency (Sohrabi et al., 2020). Similar to 

other viral infections, patients may be more susceptible to microbial secondary infections, which 

can complicate disease management strategies and result in adverse patient outcomes 

(Brüggemann et al., 2020; Cox et al., 2020). For example, approximately one quarter of patients 

infected with the H1N1 influenza virus during the 2009 pandemic were also infected with 

bacteria or fungi (MacIntyre et al., 2018; Zhou et al., 2020). Among COVID-19 patients, one 

study found that ~17% of individuals also have bacterial infections (Langford et al., 2020) and 

another that ~40% of patients with severe COVID-19 pneumonia were also infected with 

filamentous fungi from the genus Aspergillus (Nasir et al., 2020). A third study reported that 

~26% of patients with acute respiratory distress syndrome-associated COVID-19 were also 

infected with Aspergillus fumigatus and had high rates of mortality (Koehler et al., 2020). Other 

studies from around the world have also reported high incidences of Aspergillus infections 

among patients with COVID-19 (Alanio et al., 2020; Chen et al., 2020; Rutsaert et al., 2020; van 

Arkel et al., 2020). Taken together, these findings have prompted some to suggest routine  

 

4This work is published in: Steenwyk, J. L., Mead, M. E., de Castro, P. A., Valero, C., Damasio, 

A., dos Santos, R. A. C., et al. (2021). Genomic and Phenotypic Analysis of COVID-19-

Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiol. Spectr. 9. 

doi:10.1128/Spectrum.00010-21. 
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clinical testing for secondary infections of Aspergillus fungi among COVID-19 patients 

(Armstrong-James et al., 2020; Gangneux et al., 2020). Despite the prevalence microbial 

infections and their association with adverse patient outcomes, these secondary infections are 

only beginning to be understood. 

 

Invasive pulmonary aspergillosis is caused by tissue infiltration of Aspergillus species after 

inhalation of their asexual spores (Fig. 18); more than 250,000 aspergillosis infections are 

estimated to occur annually and have high mortality rates (Bongomin et al., 2017). The major  

 

 
Figure 18. Inhalation of Aspergillus spores can result in fungal infection. 

Inhalation of Aspergillus spores from the environment can travel to the lung and then grow 

vegetatively and spread to other parts of the body. 

 
etiological agent of aspergillosis is A. fumigatus (Latgé and Chamilos, 2019), although a few 

other Aspergillus species are also known to cause aspergillosis (Bastos et al., 2020b; dos Santos 

et al., 2020b; Rokas et al., 2020a; Steenwyk et al., 2020c). Numerous factors are known to be 
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associated with A. fumigatus pathogenicity, including its ability to grow at the human body 

temperature (37°C) and withstand oxidative stress (Kamei and Watanabe, 2005; Tekaia and 

Latgé, 2005; Shwab et al., 2007; Losada et al., 2009; Abad et al., 2010; Grahl et al., 2012; Yin et 

al., 2013; Wiemann et al., 2014; Knox et al., 2016; Kowalski et al., 2019; Raffa and Keller, 

2019; Blachowicz et al., 2020). Disease management of A. fumigatus is further complicated by 

resistance to antifungal drugs among strains (Chamilos and Kontoyiannis, 2005; Howard and 

Arendrup, 2011; Chowdhary et al., 2014; Sewell et al., 2019) Additionally, A. fumigatus strains 

have been previously shown to exhibit strain heterogeneity with respect to virulence and 

pathogenicity-associated traits (Kowalski et al., 2016; Keller, 2017; Kowalski et al., 2019; Ries 

et al., 2019; dos Santos et al., 2020b; Steenwyk et al., 2020d). However, it remains unclear 

whether the genomic and pathogenicity-related phenotypic characteristics of CAPA isolates are 

similar to or distinct from those of previously studied clinical strains of A. fumigatus. 

 

To address this question and gain insight into the pathobiology of A. fumigatus CAPA isolates, 

we examined the genomic and phenotypic characteristics of four CAPA isolates obtained from 

four critically ill patients of two different centers in Cologne, Germany (Koehler et al., 2020) 

(Table 1 from Steenwyk et al. 2021d). All patients were submitted to intensive care units due to 

moderate to severe respiratory distress syndrome (ARDS). Genome-scale phylogenetic (or 

phylogenomic) analyses revealed CAPA isolates formed a monophyletic group closely related to 

reference strains Af293 and A1163. Examination of the mutational spectra of 206 genes known 

to modulate virulence in A. fumigatus (which are hereafter referred to as genetic determinants of 

virulence) revealed several putative loss of function (LOF) mutations. Notably, CAPA isolate D 
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had the most putative LOF mutations among genes whose null mutants are known to increase 

virulence. The  

 

profiles of pathogenicity-related traits and of secondary metabolites of the CAPA isolates were 

similar to those of reference A. fumigatus strains Af293 and CEA17 or CEA10, which are 

parental strains of A1163 (Bertuzzi et al., 2020). One notable exception was that CAPA isolate D 

was significantly more virulent than other strains in an invertebrate model of disease, but on par 

with two other clinical strains of A. fumigatus. These results suggest that the genomes of A. 

fumigatus CAPA isolates contain nearly complete and intact repertoires of genetic determinants 

of virulence and have phenotypic profiles that are broadly expected for A. fumigatus clinical 

isolates. However, we did find evidence for genetic and phenotypic strain heterogeneity. These 

results suggest the CAPA isolates show similar phenotypic profiles as A. fumigatus clinical 

strains Af293 and A1163 and expand our understanding of CAPA. 

 

Materials and Methods 

Patient information and ethics approval 

Patients were included into the FungiScope® global registry for emerging invasive fungal 

infections (www.ClinicalTrials.gov, NCT 01731353). The clinical trial is approved by the Ethics 

Committee of the University of Cologne, Cologne, Germany (Study ID: 05-102) (Seidel et al., 

2017). Since 2019, patients with invasive aspergillosis are also included. 

 

DNA quality control, library preparation, and sequencing 

Sample DNA concentration was measured by Qubit fluorometer and DNA integrity and purity 

by agarose gel electrophoresis. For each sample, 1-1.5μg genomic DNA was randomly 
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fragmented by Covaris and fragments with average size of 200-400bp were selected by 

Agencourt AMPure XP-Medium kit. The selected fragments were end-repaired, 3’ adenylated, 

adapters-ligated, and amplified by PCR. Double-stranded PCR products were recovered by the 

AxyPrep Mag PCR clean up Kit, and then heat denatured and circularized by using the splint 

oligo sequence. The single-strand circle DNA (ssCir DNA) products were formatted as the final 

library and went through further QC procedures. The libraries were sequenced on the 

MGISEQ2000 platform. 

 

Genome assembly and annotations 

Short-read sequencing data of each sample were assembled using MaSuRCA, v3.4.1 (Zimin et 

al., 2013). Each de novo genome assembly was annotated using the MAKER genome annotation 

pipeline, v2.31.11 (Holt and Yandell, 2011), which integrates three ab initio gene predictors: 

AUGUSTUS, v3.3.3 (Stanke and Waack, 2003), GeneMark-ES, v4.59 (Besemer and 

Borodovsky, 2005), and SNAP, v2013-11-29 (Korf, 2004). Fungal protein sequences in the 

SwissProt database (release 2020_02) were used as homology evidence for the genome 

annotation. The MAKER annotation process occurs in an iterative manner as described 

previously (Shen et al., 2018). In brief, for each genome, repeats were first soft-masked using 

RepeatMasker v4.1.0 (http://www.repeatmasker.org) with the library Repbase library release-

20181026 and the “-species” parameter set to “Aspergillus fumigatus”. GeneMark-ES was then 

trained on the masked genome sequence using the self-training option (“--ES”) and the branch 

model algorithm (“--fungus”), which is optimal for fungal genome annotation. On the other 

hand, an initial MAKER analysis was carried out where gene annotations were generated directly 

from homology evidence, and the resulting gene models were used to train both AUGUSTUS 
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and SNAP. Once trained, the ab initio predictors were used together with homology evidence to 

conduct a first round of full MAKER analysis. Resulting gene models supported by homology 

evidence were used to re-train AUGUSTUS and SNAP. A second round of MAKER analysis 

was conducted using the newly trained AUGUSTUS and SNAP parameters, and once again the 

resulting gene models with homology supports were used to re-train AUGUSTUS and SNAP. 

Finally, a third round of MAKER analysis was performed using the new AUGUSTUS and 

SNAP parameters to generate the final set of annotations for the genome. The completeness of de 

novo genome assemblies and ab initio gene predictions was assessed using BUSCO, v4.1.2 

(Waterhouse et al., 2018a) using 4,191 pre-selected ‘nearly’ universally single-copy orthologous 

genes from the Eurotiales database (eurotials_odb10.2019-11-20) in OrthoDB, v10.1 

(Waterhouse et al., 2013).  

 

Polymorphism identification 

To characterize and examine the putative impact of polymorphisms in the genomes of the CAPA 

isolates, we identified single nucleotide polymorphisms (SNPs), insertion-deletion 

polymorphisms (indels), and copy number (CN) polymorphisms. To do so, reads were first 

quality-trimmed and mapped to the genome of A. fumigatus Af293 (RefSeq assembly accession: 

GCF_000002655.1) following a previously established protocol (Steenwyk and Rokas, 2017). 

Specifically, reads were first quality-trimmed with Trimmomatic, v0.36 (Bolger et al., 2014), 

using the parameters leading:10, trailing:10, slidingwindow:4:20, minlen:50. The resulting 

quality-trimmed reads were mapped to the A. fumigatus Af293 genome using the Burrows-

Wheeler Aligner (BWA), v0.7.17 (Li, 2013), with the mem parameter. Thereafter, mapped reads 
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were converted to a sorted bam and mpileup format for polymorphism identification using 

SAMtools, v.1.3.1 (Li et al., 2009a).  

 

To identify SNPs and indels, mpileup files were used as input into VarScan, v2.3.9 (Koboldt et 

al., 2012), with the mpileup2snp and mpileup2indel functions, respectively. To ensure only 

confident SNPs and indels were identified, a Fischer’s Exact test p-value threshold of 0.05 and 

minimum variant allele frequency of 0.75 were used. The resulting Variant Call Format files 

were used as input to snpEff, v.4.3t (Cingolani et al., 2012), which predicted their functional 

impacts on gene function as high, moderate, or low. To identify CN variants, the sorted bam files 

were used as input into Control-FREEC, v9.1 (Boeva et al., 2011, 2012). The 

coefficientOfVariation parameter was set to 0.062 and window size was automatically 

determined by Control-FREEC. To ensure high-confidence in CN variant identification, a p-

value threshold of 0.05 was used for both Wilcoxon Rank Sum and Kolmogorov Smirnov tests.  

 

To identify evidence of putative pseudogenization between reference strains A1163 and Af293, 

we used a previously established approach (Ortiz-Merino et al., 2017; Steenwyk et al., 2020c). 

More specifically, we compared lengths of gene pairs as a proxy for pseudogenization. A gene 

was considered a putative pseudogene in one of the strains if the gene was 70% the length of its 

reciprocal best blast hit in the other strain.   

 

Maximum likelihood molecular phylogenetics 

To taxonomically identify the species of Aspergillus sequenced, we conducted molecular 

phylogenetic analysis of two different loci and two different datasets. In the first analysis, the 
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nucleotide sequence of the alpha subunit of translation elongation factor EF-1, tef1 (NCBI 

Accession: XM_745295.2), from the genome of A. fumigatus Af293 was used to extract other 

fungal tef1 sequences from NCBI’s fungal nucleotide reference sequence database (downloaded 

July 2020) using the blastn function from NCBI’s BLAST+, v2.3.0 (Camacho et al., 2009). Tef1 

sequences were extracted from the CAPA isolates by identifying their best BLAST hit. 

Sequences from the top 100 best BLAST hits in the fungal nucleotide reference sequence 

database and the four tef1 sequences from the CAPA isolates were aligned using MAFFT, 

v7.402 (Katoh and Standley, 2013) using previously described parameters (Steenwyk et al., 

2019c) with slight modifications. Specifically, the following parameters were used: --op 1.0 --

maxiterate 1000 --retree 1 --genafpair. The resulting alignment was trimmed using ClipKIT, v0.1 

(Steenwyk et al., 2020c), with default ‘gappy’ mode. The trimmed alignment was then used to 

infer the evolutionary history of tef1 sequences using IQ-TREE2 (Minh et al., 2020). The best 

fitting substitution model—TIM3 with empirical base frequencies, allowing for a proportion of 

invariable sites, and a discrete Gamma model (Yang, 1994; Gu et al., 1995) with four rate 

categories (TIM3+F+I+G4)—was determined using Bayesian Information Criterion. In the 

second analysis, the same process was used to conduct molecular phylogenetic analysis using 

calmodulin nucleotide sequences from Aspergillus section Fumigati species and Aspergillus 

clavatus, an outgroup taxon, using sequences from NCBI that were made available elsewhere 

(dos Santos et al., 2020a). For calmodulin sequences, the best fitting substitution model was TNe 

(Tamura and Nei, 1993) with a discrete Gamma model with four rate categories (TNe+G4). 

Bipartition support was assessed using 5,000 ultrafast bootstrap support approximations (Hoang 

et al., 2018). 
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To determine what strains of A. fumigatus the CAPA isolates were most similar to, we conducted 

phylogenomic analyses using the 50 Aspergillus proteomes. To do so, we first identified 

orthologous groups of genes across all 50 Aspergillus using OrthoFinder, 2.3.8 (Emms and 

Kelly, 2019). OrthoFinder takes as input the proteome sequence files from multiple genomes and 

conducts all-vs-all sequence similarity searches using DIAMOND, v0.9.24.125 (Buchfink et al., 

2015). Our input included 50 total proteomes: 47 were A. fumigatus, two were A. fischeri, and 

one was A. oerlinghausenensis (Fedorova et al., 2008; Lind et al., 2017; Steenwyk et al., 2020d). 

OrthoFinder then clusters sequences into orthologous groups of genes using the graph-based 

Markov Clustering Algorithm (van Dongen, 2000). To maximize the number of single-copy 

orthologous groups of genes found across all input genomes, clustering granularity was explored 

by running 41 iterations of OrthoFinder that differed in their inflation parameter. Specifically, 

iterations of OrthoFinder inflation parameters were set to 1.0-5.0 with a step of 0.1. The lowest 

number of single-copy orthologous groups of genes was 3,399 when using an inflation parameter 

of 1.0; the highest number was 4,525 when using inflation parameter values of 3.8 and 4.1. We 

used the groups inferred using an inflation parameter of 3.8.  

 

Next, we built the phylogenomic data matrix and reconstructed evolutionary relationships among 

the 50 Aspergillus genomes. To do so, the protein sequences from 4,525 single-copy orthologous 

groups of genes were aligned using MAFFT, v7.402 (Katoh and Standley, 2013), with the 

following parameters: --bl 62 --op 1.0 --maxiterate 1000 --retree 1 --genafpair. Next, nucleotide 

sequences were threaded onto the protein alignments using function thread_dna in PhyKIT, 

v0.0.1 (Steenwyk et al., 2021b). The resulting codon-based alignments were then trimmed using 

ClipKIT, v0.1 (Steenwyk et al., 2020b), using the gappy mode. The resulting aligned and 
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trimmed alignments were then concatenated into a single matrix with 7,133,367 sites using the 

PhyKIT function create_concat. To reconstruct the evolutionary history of the 50 Aspergillus 

genomes, a single best-fitting model of sequence substitution and rate heterogeneity was 

estimated across the entire matrix using IQ-TREE2, v.2.0.6 (Minh et al., 2020). The best-fitting 

model was determined to be a general time reversible model with empirical base frequencies and 

invariable sites with a discrete Gamma model with four rate categories (GTR+F+I+G4) (Tavaré, 

1986; Gu et al., 1995; Waddell and Steel, 1997; Vinet and Zhedanov, 2011) using Bayesian 

Information Criterion. During tree search, the number of candidate trees maintained during 

maximum likelihood tree search was increased from five to ten. Five independent searches were 

conducted and the tree with the best log-likelihood score was chosen as the ‘best’ phylogeny. 

Bipartition support was evaluated using 5,000 ultrafast bootstrap approximations (Hoang et al., 

2018). 

 

Biosynthetic gene cluster prediction 

To predict BGCs in the genomes of A. fumigatus strains Af293 and the CAPA isolates, gene 

boundaries inferred by MAKER were used as input into antiSMASH, v4.1.0 (Weber et al., 

2015). Using a previously published list of genes known to encode BGCs in the genome of A. 

fumigatus Af293 (Lind et al., 2017), BLAST-based searches using an expectation value 

threshold of 1 X 10-10 were used to identify BGCs implicated in modulating host biology using 

NCBI’s BLAST+, v2.3.0 (Camacho et al., 2009). Among predicted BGCs that did not match the 

previously published list, we further examined their evolutionary history if at least 50% of genes 

showed similarity to species outside of the genus Aspergillus, which is information provided in 
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the antiSMASH output. Using these criteria, no evidence suggestive of horizontally acquired 

BGCs from distant relatives was detected. 

 

Characterization of biosynthesized secondary metabolites 

General Experimental Procedures 

HRESIMS experiments utilized a Thermo LTQ Orbitrap XL mass spectrometer equipped with 

an electrospray ionization source. A Waters Acquity UPLC (Waters Corp.) was utilized using a 

BEH C18 column (1.7 m; 50 mm x 2.1 mm) set to a temperature of 40oC and a flow rate of 0.3 

ml/min. The mobile phase consisted of a linear gradient of CH3CN-H2O (both acidified with 

0.1% formic acid), starting at 15% CH3CN and increasing linearly to 100% CH3CN over 8 min, 

with a 1.5 min hold before returning to the starting condition. 

 

Growth and extraction of fungal cultures 

To identify the chemical differences between the various A. fumigatus strains and isolates 

(Af293, CEA10, CAPA isolates A, B, C, and D), they were grown in a clinically relevant growth 

condition (37˚C) and extracted for chemometric analysis. Czapek Dox Agar (Sigma Aldrich) 

Petri plates were inoculated from the asexual spores of each strain in biological triplicates. 

Subsequently, the plates were incubated at 37°C in the dark for three days. The cultures were 

extracted by chopping and transferring the agar to 20 mL scintillation vials, adding of 10 mL of 

acetone, thoroughly shaking, and then letting the samples sit for 4 hours. Lastly, the cultures 

were filtered and evaporated to dryness under Nitrogen gas.  
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Metabolomics Analyses 

Principal component analysis (PCA) was performed on the UPLC-MS data. Untargeted UPLC-

MS datasets for each sample were individually aligned, filtered, and analyzed using MZmine 

2.20 software (https://sourceforge.net/projects/mzmine/) (Pluskal et al., 2010). Peak detection 

was achieved using the following parameters: noise level (absolute value), 1.5×105; minimum 

peak duration, 0.05 min; m/z variation tolerance, 0.05; and m/z intensity variation, 20%. Peak list 

filtering and retention time alignment algorithms were used to refine peak detection. The join 

algorithm integrated all sample profiles into a data matrix using the following parameters: m/z 

and retention time balance set at 10.0 each, m/z tolerance set at 0.001, and RT tolerance set at 0.5 

mins. The resulting data matrix was exported to Excel (Microsoft) for analysis as a set of m/z – 

retention time pairs with individual peak areas detected in quadruplicate analyses. Samples that 

did not possess detectable quantities of a given marker ion were assigned a peak area of zero to 

maintain the same number of variables for all sample sets. Ions that did not elute between 2 and 

8 minutes and/or had an m/z ratio less than 100 or greater than 1,200 Da were removed from 

analysis. Relative standard deviation was used to quantify variance between the technical 

replicate injections, which may differ slightly based on instrument variance. A cutoff of 1.0 was 

used at any given m/z – retention time pair across the technical replicate injections of one 

biological replicate, and if the variance was greater than the cutoff, it was assigned a peak area of 

zero (Caesar et al., 2018). Final chemometric analysis, including data filtering and PCA were 

conducted using Python. The PCA plots were generated using data from the averaged biological 

replicates from the Petri dish cultures. Each biological replicate was plotted using averaged peak 

areas obtained across four replicate injections (technical replicates). The principal components 

(PC) were generated and processed via Scikit Learn decomposition and Pandas, v0.25.3, Python 

https://sourceforge.net/projects/mzmine/
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libraries. The PCA data were plotted using Altair, v4.1.0, Python graphing libraries. These data 

were converted into a dataframe via Pandas, and the PCs were created from the dataframe using 

Scikit Learn decomposition. The PCA scores and loadings plots were then plotted using the PCs 

dataframe that was generated from Scikit Learn. 

 

Infection of Galleria mellonella  

Survival curves (n≥20/strain) of Galleria mellonella infected with CAPA isolates A, B, C, and 

D. Phosphate buffered saline (PBS) without asexual spores (conidia) was administered as a 

negative control. A log-rank test was used to examine strain heterogeneity followed by pairwise 

comparisons with Benjamini-Hochberg multi-test correction (Benjamini and Hochberg, 1995). 

All the selected larvae of Galleria mellonella were in the final (sixth) instar larval stage of 

development, weighing 275–330 milligram. Fresh conidia from each strain were harvested from 

minimal media (MM) plates in PBS solution and filtered through a Miracloth (Calbiochem). For 

each strain, the spores were counted using a hemocytometer and the stock suspension was done 

at 2 × 108 conidia/milliliter. The viability of the administered inoculum was determined by 

plating a serial dilution of the conidia on MM medium at 37°C. A total of 5 microliters (1 × 106 

conidia/larva) from each stock suspension was inoculated per larva. The control group was 

composed of larvae inoculated with 5 microliters of PBS to observe the killing due to physical 

trauma. The inoculum was performed by using Hamilton syringe (7000.5KH) via the last left 

proleg. After infection, the larvae were maintained in petri dishes at 37°C in the dark and were 

scored daily. Larvae were considered dead by presenting the absence of movement in response to 

touch. 
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Growth assays 

To examine growth conditions of the CAPA isolates and reference strains Af293 and CEA17, 

plates were inoculated with 104 spores per strain and allowed to grow for five days on solid MM 

or MM supplemented with various concentrations of osmotic (sorbitol, NaCl), cell wall (congo 

red, calcofluor white and caspofungin), and oxidative stress agents (menadione and t-butyl) at 

37°C. MM had 1% (weight / volume) glucose, original high nitrate salts, trace elements, and a 

pH of 6.5; trace elements, vitamins, and nitrate salts compositions follow standards described 

elsewhere (Käfer, 1977). To correct for strain heterogeneity in growth rates, radial growth in 

centimeters in the presence of stressors was divided by radial growth in centimeters in the 

absence of the stressor.  

 

To determine the minimal inhibitory concentrations of antifungal drugs in the CAPA isolates and 

reference strains Af293 and CEA17, strains were grown in 96-well plates at a concentration of 

104 spores / well in 200 μl of RPMI-1640 supplemented with increasing concentrations of 

Amphotericin B, Voriconazole, Itraconazole and Posaconazole, according to the protocol 

elaborated by the Clinical and Laboratory Standards Institute (CLSI, 2008). Minimal inhibitory 

concentration was defined as the lowest concentration of drugs that visually inhibited 100% 

fungal growth. Three independent experiments were carried out for each antifungal drug.  

 

Data Availability 

Newly sequenced genomes assemblies, annotations, and raw short reads have been deposited to 

NCBI’s GenBank database under BioProject accession PRJNA673120. Supplementary tables, 

figures, and files; additional copies of genome assemblies, annotations, and gene coordinates; 
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raw data including the genome assembly and annotations of all analyzed Aspergillus genomes; 

the aligned and trimmed phylogenetic and phylogenomic data matrices; polymorphisms 

identified in the present project; and predicted BGCs have been uploaded to figshare (doi: 

10.6084/m9.figshare.13118549). 

 

Results 

CAPA isolates belong to A. fumigatus and are closely related to reference strains Af293 and 

A1163 

To confirm that the CAPA isolates belong to A. fumigatus, we sequenced, assembled, and 

annotated their genomes (Table S1 from Steenwyk et al. 2021d; all supplementary tables are 

posted at figshare, doi: 10.6084/m9.figshare.13118549). Phylogenetic analyses conducted using 

tef1 (Fig. S1 from Steenwyk et al. 2021d; all supplementary figures are posted at figshare, doi: 

10.6084/m9.figshare.13118549) and calmodulin (Fig. S2 from Steenwyk et al. 2021d) sequences 

suggested that all CAPA isolates are A. fumigatus. Phylogenomic analysis using 50 Aspergillus 

genomes (the four CAPA isolates, 43 A. fumigatus genomes that span the known diversity of the 

species including strains Af293 and A1163 (Nierman et al., 2005; Fedorova et al., 2008; Liu et 

al., 2011; Abdolrasouli et al., 2015a; Knox et al., 2016; Lind et al., 2017; Paul et al., 2017; dos 

Santos et al., 2020b), A. fischeri strains NRRL 181 and NRRL 4585, and A. oerlinghausenensis 

strain CBS 139183T (Fedorova et al., 2008; Steenwyk et al., 2020d)) confirmed that all CAPA 

isolates are A. fumigatus (Fig. 19). Phylogenomic analyses also revealed the CAPA isolates 

formed a monophyletic group closely related to reference strains Af293 and A1163. CAPA 

isolates are inferred to be closely related, which may be due to the fact that they are all from the 

same geographic area. 
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Figure 19. Phylogenomics confirms that COVID-19-associated pulmonary aspergillosis (CAPA) 

isolates are Aspergillus fumigatus. 

Phylogenomic analysis of a concatenated matrix of 4,525 single-copy orthologous groups genes 

(sites: 7,133,367) confirmed CAPA isolates are A. fumigatus. Furthermore, CAPA isolates are 

closely related to reference strains A1163 and Af293. Bipartitions with less than 85% ultrafast 

bootstrap approximation support were collapsed. 

 

 

CAPA isolate genomes contain polymorphisms in genetic determinants of virulence and 

biosynthetic gene clusters 

An extensive literature and database search identified 206 genetic determinants of virulence (File 

S1; all supplementary files are posted at figshare, doi: 10.6084/m9.figshare.13118549) (Abad et 

al., 2010; Bignell et al., 2016; Kjærbølling et al., 2018; Mead et al., 2019a; Urban et al., 2019). 

We define genetic determinants of virulence as genes that alter virulence in an animal model of 

disease when deleted or are required for biosynthesis of secondary metabolites known to affect 

virulence. This definition resulted in a list of genes distinct from those previously published, 

which include genes that contribute to allergy-related phenotypes, genes that are computationally 

predicted to contribute to virulence but have yet to be validated in an animal model of fungal 

disease (Tomee and Kauffman, 2000; Askew, 2008; Puértolas-Balint et al., 2019; Pennerman et 

al., 2020). 

 

To determine if the 206 genetic determinants of virulence are conserved in CAPA isolates, we 

conducted sequence similarity searches of gene sequences in the genomes of the CAPA isolates. 

We found that all 206 genes were present in the genomes of the CAPA isolates. Furthermore, 

none of the 206 genetic determinants of virulence showed any copy number variation among 

CAPA isolates. Examination of single nucleotide polymorphisms (SNPs) and insertion/deletion 

(indel) polymorphisms coupled with variant effect prediction in these 206 genes (Fig. 20; File S2 
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from Steenwyk et al. 2021d) showed that all CAPA isolates shared multiple polymorphisms 

resulting in early stop codons or frameshift mutations suggestive of loss of function (LOF) in 

NRPS8 (AFUA_5G12730), a nonribosomal peptide synthetase gene that encodes an unknown 

secondary metabolite (Lind et al., 2017). LOF mutations in NRPS8 are known to result in  
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Figure 20. Mutational spectra among genetic determinants of virulence. 

Genome-wide SNPs, indels, and CN variants were filtered for those present in genetic 

determinants of virulence. Then, the number of genetic determinants of virulence with high-

impact polymorphisms was identified. The number known to increase or decrease virulence in 

null mutants was determined thereafter. 

 

increased virulence in a mouse model of disease (O’Hanlon et al., 2011). Putative LOF 

mutations were also observed in genes whose null mutants decreased virulence. For example, all 

CAPA isolates shared the same SNPs resulting in early stop codons that likely result in LOF or 

partial LOF in pptA (AFUA_2G08590), a putative 4’-phosphopantetheinyl transferase, whose 

deletion results in reduced virulence in a mouse model of disease (Johns et al., 2017). In light of 

the close evolutionary relationships among CAPA isolates, we hypothesize that these shared 

mutations likely occurred in the genome of their most recent common ancestor. 

 

In addition to shared polymorphisms, analyses of CAPA isolate genomes also revealed isolate-

specific polymorphisms affecting genetic determinants of virulence (File S2 from Steenwyk et 

al. 2021d). For example, SNPs resulting in early stop codons, which likely lead to LOF, were 

observed in CYP5081A1 (AFUA_4G14780), a putative cytochrome P450 monooxygenase, in 

CAPA isolates B and C. CYP5081A1 LOF is associated with reduced virulence of A. fumigatus 

(Mitsuguchi et al., 2009). Other SNPs are found only in single isolates. CAPA isolate B has a 

frameshift mutation in a putative fatty acid oxygenase (AFUA_4G00180). CAPA isolate D has a 

mutation resulting in the loss of the start codon in fleA (AFUA_5G14740), a gene that encodes 

an L-fucose-specific lectin. Mice infected with FLEA null mutants have more severe pneumonia 

and invasive aspergillosis than wild-type strains. FLEA null mutants cause more severe disease 

because FleA binds to macrophages and therefore is critical for host recognition, clearance, and 

macrophage killing (Kerr et al., 2016). The only evidence of pseudogenization among the genetic 
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determinants of virulence in the reference strains was observed in mybA (AFUA_3G07070), a 

transcription factor involved in conidiation and conidial viability (Valsecchi et al., 2017), in 

strain A1163. MybA null mutants have reduced virulence compared to wild type strains 

(Valsecchi et al., 2017). 

 

Examination of three additional clinical strains of A. fumigatus (IFM61407, CN-CM7555, and 

Afs35) revealed that CAPA isolates shared some, but not all, polymorphisms present in the 206 

genetic determinants of virulence. For example, similar putative LOF mutations were observed 

in NRPS8 (AFUA_5G12730). Polymorphisms that were not shared between CAPA isolates and 

the three clinical strains include the loss of a stop codon in aspA, a septin (Vargas-Muñiz et al., 

2015), in Afs35; an early stop codon in noc3, a nuclear export protein (Hu et al., 2007), in CN-

CM7555; and a lost stop codon in cat2, a bifunctional catalase-peroxidase (Paris et al., 2003), in 

IFM61407. A complete list of high impact polymorphisms in the three clinical strains are 

available in File S2 from Steenwyk et al. 2021d. 

 

Examination of the presence of biosynthetic gene clusters (BGCs) revealed that all CAPA 

isolates had BGCs that encode secondary metabolites known to modulate host biology (Table 2 

from Steenwyk et al. 2021d). For example, all CAPA isolates had BGCs encoding the toxic 

secondary metabolite gliotoxin (Fig. 21). Other intact BGCs in the genomes of the CAPA 

isolates include fumitremorgin, trypacidin, pseurotin, and fumagillin, which are known to 

modulate host biology (Ishikawa et al., 2009; González-Lobato et al., 2010; Gauthier et al., 

2012); for example, fumagillin is known to inhibit neutrophil function (Fallon et al., 2010, 2011). 
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More broadly, all CAPA isolates had similar numbers and classes of BGCs (Fig. S3 from 

Steenwyk et al. 2021d). 

 

 

 
Figure 21. COVID-19-associated pulmonary aspergillosis (CAPA) isolates of Aspergillus 

fumigatus have biosynthetic gene clusters (BGCs) that encode the toxic small molecule 

gliotoxin. 

Gliotoxin is known to contribute to virulence of A. fumigatus. The genomes of CAPA isolates of 

A. fumigatus contain biosynthetic gene clusters known to encode gliotoxin. Note, the BGC of 

CAPA isolate A was split between two contigs and, therefore, the BGC is hypothesized to be 

present. 

 

In summary, we found that CAPA isolates were closely related to one another and had largely 

intact genetic determinants of virulence and BGCs. However, we observed strain-specific 
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polymorphisms in known genetic determinants of virulence in CAPA isolate genomes, which 

raises the hypothesis that CAPA isolates differ in their virulence profiles.  

 

CAPA isolates display strain heterogeneity in virulence and in a few virulence-related traits 

Examination of virulence and virulence-related traits revealed the CAPA isolates often, but not 

always, had similar phenotypic profiles compared to reference A. fumigatus strains Af293 and a 

CEA17 ΔakuBKU80 pyrG+ derivative of CEA17 akuBKU80+, pyrG- (which is hereafter referred to 

as CEA17 for simplicity (Bertuzzi et al., 2020)). For example, virulence in the Galleria moth 

model of fungal disease revealed strain heterogeneity among CAPA isolates, Af293, CEA17, and 

a panel of three clinical strains of A. fumigatus, namely Afs35, IFM61407, and CN-CM7555 

(Takahashi-Nakaguchi et al., 2015; Garcia-Rubio et al., 2018; Bertuzzi et al., 2020) (p < 0.001; 

log-rank test; Fig. 22A). Pairwise examination revealed that the observed strain heterogeneity  
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Figure 22. Strain heterogeneity among COVID-19-associated pulmonary aspergillosis (CAPA) 

isolates of Aspergillus fumigatus. 

(A) The virulence of the CAPA isolates, reference strains Af293 and CEA17, and clinical strains 

Afs35, CN-CM7555, and IFM61407 significantly varied in the Galleria moth model of disease 

(P < 0.001; log-rank test; ≥20 replicates per strain). Pairwise examinations revealed CAPA 

isolate D was significantly more virulent than all other strains (Benjamini-Hochberg 

adjusted P < 0.01 when comparing CAPA isolate D to another isolate; log-rank test) with the 

exception of clinical strains IFM61407 and CN-CM 7555 (P = 0.085 and P = 0.386, 

respectively). Growth of CAPA isolates and references strains Af293 and CEA17 in the presence 

of osmotic (B), cell wall (C), and oxidative stressors (D). Growth differences between CAPA 

isolates and reference strains Af293 and CEA17 were observed across all growth conditions 

(P < 0.001; multifactor ANOVA). Pairwise differences were assessed using the post hoc Tukey’s 

honestly significant difference (HSD) test and were only observed for growth in the presence of 

CFW at 25 μg/ml (P < 0.001; Tukey HSD test) in which the CAPA isolates did not grow as well 

as the reference isolates. To correct for strain heterogeneity in growth rates, radial growth in 

centimeters in the presence of stressors was divided by radial growth in centimeters in the 

absence of the stressor (MM only). Abbreviations of cell wall stressors are as follows: CFW, 

calcofluor white; CR, Congo red; CSP, caspofungin. Growth in the presence of other stressors is 

summarized in Fig. S4. Error bars in panels B to D represent the average of ± one standard 

deviation across three replicates. 

 

was primarily driven by CAPA isolate D, which was significantly more virulent than all other 

CAPA isolates, reference strains Af293 and CEA17, and clinical strain Afs35 (Benjamini-
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Hochberg adjusted p-value < 0.05 when comparing CAPA isolate D to another isolate; log-rank 

test; File S3 from Steenwyk et al. 2021d). However, the virulence of the CAPA isolate D was on 

par to those of clinical strains IFM61407 and CN-CM 7555 (p = 0.085 and 0.386, respectively) 

(Fig. 22A). These results reveal that the CAPA isolates have generally similar virulence profiles 

compared to the reference strains Af293 and CEA17 with the exception of the more virulent 

CAPA isolate D. Furthermore, the virulence profiles of all CAPA isolates are within the known 

range of A. fumigatus clinical strains. Determining the association between virulence and the 

genetic polymorphisms described in the section above in addition to other polymorphisms 

identified in this study (Fig 20) is an important future direction. 

 

Examination of growth in the presence of osmotic, cell wall, and oxidative stressors revealed that 

the phenotypic profiles of CAPA isolates were similar to the profiles of Af293 and CEA17 

strains (Fig. 22B-D and Fig. S4 from Steenwyk et al. 2021d). The sole exception was growth in 

the presence of calcofluor white, where we observed that the CAPA isolates were more sensitive 

than reference strains Af293 and CEA17 (p < 0.001; Tukey's Honest Significant Difference test; 

Fig. 22C). Lastly, antifungal drug susceptibility profiles for amphotericin B, voriconazole, 

itraconazole, and posaconazole were similar between the CAPA isolates and reference strains 

Af293 and CEA17 (Table 3 from Steenwyk et al. 2021d). Following the guidelines of the 

Clinical and Laboratory Standards Institute (CLSI, 2008), the CAPA isolates are not considered 

multidrug resistant. 

 

Secondary metabolites can impact host biology and virulence (Sugui et al., 2007; Raffa and 

Keller, 2019). Examination of secondary metabolite production revealed strain heterogeneity 
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among CAPA isolates and reference strains Af293 and CEA10, a pyrG+ and akuBKU80+ strain 

that CEA17 is derived from (Bertuzzi et al., 2020). For example, principal component analysis of 

chromatogram features revealed that CAPA isolate A was substantially different from other 

CAPA isolates along the first and second principal components, which capture 82.47% of the 

total variance, whereas the CAPA isolate D was substantially different from other CAPA isolates 

along the second and third principal components, which capture 38.64% of total variance (Fig. 

S5 from Steenwyk et al. 2021d). Examination of the loadings plot, which identifies the 

individual secondary metabolites that contribute to the observed variation across strains, revealed 

gliotoxin and fumitremorgin as the largest contributors (Fig. S6 from Steenwyk et al. 2021d). 

Measurement of relative abundance of biosynthesized gliotoxin and fumitremorgin, two 

secondary metabolites known to modulate host biology (Raffa and Keller, 2019), showed that the 

largest amount of fumitremorgin was biosynthesized by the CAPA isolate A, and the largest 

amount of gliotoxin was biosynthesized by the Af293 strain followed by the CAPA isolate C 

(Fig. S6 from Steenwyk et al. 2021d; Table 2 from Steenwyk et al. 2021d). 

 

In summary, we found that the CAPA isolates have similar phenotypic profiles with the 

exception of growth in the presence of calcofluor white and secondary metabolite biosynthesis 

compared to reference strains, and virulence on par with the known range of A. fumigatus 

clinical strains.  

 

Discussion 

The effects of secondary fungal infections in COVID-19 patients are only beginning to be 

understood. Our results revealed that CAPA isolates are generally, but not always, similar to A. 
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fumigatus clinical reference strains. Notably, CAPA isolate D was significantly more virulent 

than the other three CAPA isolates and two reference strains examined, but on par with other 

clinical strains. Taken together, these results are important to consider in the management of 

fungal infections among patients with COVID-19, especially those infected with A. fumigatus, 

and broaden our understanding of CAPA. 
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CHAPTER 6 

Extensive copy number variation in fermentation-related genes among Saccharomyces 

cerevisiae wine strains5 

 

Introduction 

Saccharomyces cerevisiae, commonly known as baker’s or brewer’s yeast, has been utilized by 

humans for the production of fermented beverages since at least 1,350 B.C.E. but may go as far 

back as the Neolithic period 7,000 years ago (Mortimer, 2000; Cavalieri et al., 2003). 

Phylogenetic analyses and archaeological evidence suggest wine strains originated from 

Mesopotamia (Bisson, 2012) and were domesticated in a single event around the same time as 

the domestication of grapes (Schacherer et al., 2009; Sicard and Legras, 2011). Further 

phylogenetic, population structure and identity-by-state analyses of single nucleotide 

polymorphism (SNP) data reveal close affinity and low genetic diversity among wine yeast 

strains across the globe, consistent with a domestication-driven population bottleneck (Liti et al., 

2009; Schacherer et al., 2009; Sicard and Legras, 2011; Cromie et al., 2013; Borneman et al., 

2016). These low levels of genetic diversity have led some to suggest that further wine strain 

development should be focused on introducing new variation into wine yeasts rather than 

exploiting their standing variation (Borneman et al. 2016).  

 

Many wine strains have characteristic variants that have presumably been favored in the wine-  

 

5This work is published in: Steenwyk, J., and Rokas, A. (2017). Extensive Copy Number 

Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains. G3 

Genes, Genomes, Genet. 7. 
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making environment (Marsit and Dequin, 2015). For example, adaptive point mutations,  

deletions and rearrangements in the promoter and coding sequence of FLO11 contribute to 

flocculation and floating thereby increasing yeast cells’ ability to obtain oxygen in the hypoxic 

environment of liquid fermentations (Fidalgo et al., 2006). Similarly, duplications of CUP1 are 

strongly associated with resistance to copper (Warringer et al., 2011), which at high 

concentrations can cause stuck fermentations, and THI5, a gene involved in thiamine metabolism 

whose expression is associated with an undesirable rotten-egg sensory perception in wine, is 

absent or down regulated among wine strains and their derivatives (Bartra et al., 2010; Brion et 

al., 2014). As these examples illustrate, the mutations underlying these, as well as many other, 

presumably adaptive traits are not only single nucleotide polymorphisms (SNPs), but also 

genomic structural variants, such as duplications, insertions, inversions, and translocations 

(Pretorius, 2000; Marsit and Dequin, 2015).  

 

Copy number (CN) variants, a class of structural variants defined as duplicated or deleted loci 

ranging from 50 bp to whole chromosomes (Zhang et al., 2009; Arlt et al., 2014), have recently 

started receiving considerable attention due to their widespread occurrence (Sudmant et al., 

2010; Bickhart et al., 2012; Axelsson et al., 2013; Pezer et al., 2015) as well as their influence on 

gene expression and phenotypic diversity (Freeman et al., 2006; Henrichsen et al., 2009). 

Mechanisms of CN variant evolution include non-allelic homologous recombination (Lupski and 

Stankiewicz, 2005) and retrotransposition (Kaessmann et al., 2009). CN variants are well studied 

in various mammals, including humans (Homo sapiens; Sudmant et al. 2015), cattle (Bos taurus; 

Bickhart et al. 2012), the house mouse (Mus musculus; Pezer et al. 2015), and the domestic dog 

(Canis lupus familiaris; Axelsson et al. 2013), where they are important contributors to genetic 
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and phenotypic diversity. 

 

Relatively few studies have investigated whole-genome CN profiles in fungi (Hu et al., 2011; 

Farrer et al., 2013; Steenwyk et al., 2016). For example, the observed CN variation of 

chromosome 1 in the human pathogen Cryptococcus neoformans results in the duplications of 

ERG11, a lanosterol-14-α-demethylase and target of the triazole antifungal drug fluconazole 

(Lupetti et al., 2002), and AFR1, an ATP binding cassette (ABC) transporter (Sanguinetti et al., 

2006), leading to increased fluconazole resistance (Sionov et al., 2010). Similarly, resistance to 

itraconazole, a triazole antifungal drug, is attributed to the duplication of cytochrome P-450-

depdendent C-14 lanosterol α-demethylase (pdmA) – a gene whose product is essential for 

ergosterol biosynthesis – in the human pathogen Aspergillus fumigatus (Osherov et al., 2001). 

Finally, in the animal pathogen Batrachochytrium dendrobatidis, the duplication of Supercontig 

V is associated with increased fitness in the presence of resistance to an antimicrobial peptide, 

although the underlying genetic elements involved remain elusive (Farrer et al., 2013).  

 

Similarly understudied is the contribution of CN variation to fungal domestication (Gibbons and 

Rinker 2015; Gallone et al. 2016). Notable examples of gene duplication being associated with 

microbial domestication include those of α-amylase in Aspergillus oryzae, which is instrumental 

in starch saccharification during the production of sake (Hunter et al., 2011; Gibbons et al., 

2012), and of the MAL1 and MAL3 loci in beer associated strains of S. cerevisiae, which 

metabolize maltose, the most abundant sugar in the beer wort (Gallone et al., 2016; Gonçalves et 

al., 2016). Beer strains of S. cerevisiae often contain additional duplicated genes associated with 

maltose metabolism, including MPH2 and MPH3, two maltose permeases, and the putative 
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maltose-responsive transcription factor, YPR196W (Gonçalves et al., 2016). Adaptive gene 

duplication in S. cerevisiae has also been detected in experimentally evolved populations 

(Dunham et al., 2002; Gresham et al., 2008; Dunn et al., 2012). Specifically, duplication of the 

locus containing the high affinity glucose transporters HXT6 and HXT7 has been observed in 

adaptively evolved asexual strains (Kao and Sherlock, 2008) as well as in populations grown in a 

glucose-limited environment (Brown et al., 1998; Dunham et al., 2002; Gresham et al., 2008). 

Altogether, these studies suggest that CN variation is a significant contributor to S. cerevisiae 

evolution and adaptation.  

 

To determine the contribution of CN variation to genome evolution in wine strains of S. 

cerevisiae, we characterized patterns of CN variation across the genomes of 132 wine strains and 

determined the functional impact of CN variable genes in environments reflective of wine-

making. Our results suggest that there is substantial CN variation among wine yeast strains, 

including in gene families (such as CUP, FLO, HXT and MAL) known to be associated with 

adaptation in the fermentation environment. More generally, it raises the hypothesis that CN 

variation is an important contributor to adaptation during microbial domestication. 

 

Materials and Methods 

Data Mining, Quality Control and Mapping 

Raw sequence data for 132 Saccharomyces cerevisiae wine strains were obtained from three 

studies (Borneman et al. 2016, 127 strains, Bioproject ID: PRJNA303109; Dunn et al. 2012, 2 

strains, Bioproject ID: SRA049752; Skelly et al. 2013, 3 strains, Bioproject ID: PRJNA186707) 

(Figure S1 from Steenwyk and Rokas, 2017, File S1 from Steenwyk and Rokas, 2017). 
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Altogether, these 132 strains represent a diverse set of commercial and non-commercial isolates 

from the ‘wine’ yeast clade (Borneman et al., 2016).  

 

Sequence reads were quality-trimmed using TRIMMOMATIC, version 0.36 (Bolger et al., 2014) 

with the following parameters and values: leading:10, trailing:10, slidingwindow:4:20, 

minlen:50. Reads were then mapped to the genome sequence of the S. cerevisiae strain S288c 

(annotation release: R64.2.1; http://www.yeastgenome.org/) using BOWTIE2, version 1.1.2 

(Langmead and Salzberg, 2012) with the ‘sensitive’ parameter on. For each sample, mapped 

reads were converted to the bam format, sorted and merged using SAMTOOLS, version 1.3.1. 

Sample depth of coverage was obtained using the SAMTOOLS depth function (Li et al., 2009a).  

 

CN Variant Identification 

To facilitate the identification of single nucleotide polymorphisms (SNPs), we first generated 

mpileup files for each strain using SAMTOOLS, version 1.3.1 (Li et al., 2009a). Using the mpileup 

files as input to VARSCAN, version 2.3.9 (Koboldt et al., 2009, 2012), we next identified all 

statistically significant SNPs (Fisher’s Exact test; p < 0.05) present in the 132 strains that had a 

read frequency of at least 0.75 and minimum coverage of 8X. This step enabled us to identify 

149,782 SNPs. By considering only SNPs that harbored a minor allele frequency of at least 10%, 

we retained 43,370 SNPs. These SNPs were used to confirm the evolutionary relationships 

among the strains using Neighbor-Net phylogenetic network analyses in SPLITSTREE, version 

4.14.1 (Huson, 1998) as well as the previously reported low levels of SNP diversity (Figure S2 

from Steenwyk and Rokas, 2017; Borneman et al. 2016).  

 

http://www.yeastgenome.org/
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To detect and quantify CN variants we used CONTROL-FREEC, version 9.1 (Boeva et al., 2011, 

2012), which we chose because of its low false positive rate and high true positive rate (Duan et 

al., 2013). Importantly, the average depth of coverage or read depth of the 132 strains was 30.1 ± 

14.7X (minimum: 13.0X, maximum: 104.5X; Figure S3 from Steenwyk and Rokas, 2017), which 

is considered sufficient for robust CNV calling (Sims et al., 2014).  

 

CONTROL-FREEC uses LOESS modeling for GC-bias correction and a LASSO-based algorithm 

for segmentation. Implemented CONTROL-FREEC parameters included window = 250, 

minExpectedGC = 0.35, maxExpectedGC = 0.55 and telocentromeric = 7000. To identify 

statistically significant CN variable loci (p < 0.05), we used the Wilcoxon Rank Sum test. The 

same CONTROL-FREEC parameters, but with a window size of 25 base pairs (bp), were used to 

examine CN variation within the intragenic Serine/Threonine-rich sequences of FLO11 (Lo and 

Dranginis, 1996). BEDTOOLS, version 2.25 (Quinlan and Hall, 2010) was used to identify 

duplicated or deleted genic loci (i.e., CN variable loci) that overlapped with genes by at least one 

nucleotide. The CN of each gene (genic CN) was then calculated as the average CN of the 250 

bp windows that overlapped with the gene’s location coordinates in the genome. The same 

method was used to determine non-genic CN for loci that did not overlap with genes (ie., non-

genic CN variable loci). To identify statistically significant differences between CN variable loci 

that were duplicated versus those that were deleted, we employed the Mann-Whitney U test 

(Wilcoxon rank-sum test) with continuity correction (Wallace, 2004). 
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Diversity in CN Variation and GO Enrichment 

To identify CN diverse loci we used two different measures. The first measure calculates the 

statistical variance (s2) for each locus where CN variants were identified in one or more strains. 

s2 values were subsequently log10 normalized. Log10(s2) accounts for diversity in raw CN values 

but not for diversity in CN allele frequencies. Thus, we also employed a second measure based 

on the Polymorphic Index Content (PIC) algorithm, which has previously been used to identify 

informative microsatellite markers for linkage analyses by taking into account both the number 

of alleles present and their frequencies (Keith et al., 1990; Risch, 1990). PIC has also been used 

to quantify population-level diversity of simple sequence repeat loci and restriction fragment 

length polymorphisms in maize (Smith et al., 1997). PIC values were calculated for each locus 

harboring at least one CN variant based on the following formula: 

𝑃𝐼𝐶 = 1 − ∑ i2

𝑧

i=𝑎

  

where i2 is the squared frequency of a to z CN values (Smith et al. 1997). PIC values may range 

from 0 (no CN diversity) to 1 (all CN alleles are unique).  

 

To create a list of loci exhibiting high CN diversity for downstream analyses, we retained only 

those loci that fell within the 50th percentile of log10(s2) values (min = -2.12, median = -1.02, and 

max = 2.40) or the 50th percentile of PIC values (min = 0.02, median = 0.14, and max = 0.96).  

 

Genes overlapping with loci exhibiting high CN diversity were used for Gene ontology (GO) 

enrichment analysis with AMIGO2, version 2.4.24 (Carbon et al., 2009) using the PANTHER 

Overrepresentation Test (release 20160715) with default settings. This test uses the PANTHER 

Gene Ontology database, version 11.0 (Thomas et al. 2003; release date 2016-07-15) which is 
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directly imported from the GO Ontology database, version 1.2 (GeneOntologyConsortium 2004; 

release date 2016-10-27), a reference gene list from S. cerevisiae, and a Mann-Whitney U test 

(Wilcoxon rank-sum test) with Bonferroni multi-test corrected p-values to identify over- and 

under-represented GO terms (Mi et al., 2013). Statistical analyses and figures were created using 

PHEATMAP, version 1.0.8 (Kolde, 2012), GPLOTS, version 3.0.1, GGPLOT2 (Wickham, 2009) or 

standard functions in R, version 3.2.2 (R Development Core Team, 2008). 

 

Identifying Loci Absent in the Reference Strain 

To identify loci absent from the reference strain but present in other strains, we assembled 

unmapped reads from the 20 strains with the lowest percentage of mapped reads. The percentage 

of mapped reads was determined using SAMTOOLS (Li et al., 2009a); its average across strains 

was 96% (min = 70.5% and max = 99%; Figure S4 from Steenwyk and Rokas, 2017). Unmapped 

reads from the 20 strains with the lowest percentage of mapped reads were assembled using 

SPADES, version 3.8.1 (Bankevich et al., 2012). The identity of scaffolds longer than the average 

length of a S. cerevisiae’s gene (~1,400 bp) was determined using blastx from NCBI’s BLAST, 

version 2.3.0 (Madden, 2013) against a local copy of the GenBank non-redundant protein 

database (downloaded on January 5, 2017).   

 

Results 

Descriptive Statistics of CN variation  

To examine CN variation across wine yeasts, we generated whole genome CN profiles for 132 

strains (Figure S5 from Steenwyk and Rokas, 2017, File S2 from Steenwyk and Rokas, 2017). 

Across all strains, we identified a total of 2,820 CNVRs that overlapped with 2,061 genes and 
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spanned 3.7 megabases (Mb). The size distribution of CNVRs was skewed toward CN variants 

that were shorter than 1 kilobase (kb) in length (Figure 23A, Figure S6A from Steenwyk and 

Rokas, 2017 & Table S1 from Steenwyk and Rokas, 2017). Strains had an average of 97.8 ± 9.5 

CNVRs (median = 86) (Figure S6B from Steenwyk and Rokas, 2017) that affected an average of 

4.3% ± 0.1% of the genome (median = 4.1%) (Figure S6C from Steenwyk and Rokas, 2017). 

 

 
Figure 23. Size distribution and location of CN variable loci. 

(A) The fraction of CNVRs (y-axis) for a given size range. Most CNVRs are ≤1000 bp. (B, C) 

Deleted genic (B) and nongenic (C) CNVRs are more prevalent than duplicated ones (P < 0.01 

for both comparisons). Note that 26.23% of genic duplications occurred in multiples of three. (D) 

Location of CN variable loci across the 16 yeast chromosomes. The small, black squares on 

either side of each chromosome denote centromere location. Chromosomes are oriented with the 

start of the chromosome on the bottom and the end on top. Loci (blue bars) and genes (orange 

bars) harboring high log10(s2) or PIC values are shown. (E) A total of 684 of the 1502 CN diverse 

loci and 243 of the 363 CN diverse genes reside in subtelomeric regions of the yeast genome; in 

contrast, very few are found in pericentromeric regions (28 loci and three genes). 
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Due to the known influence of CN variable genes (Henrichsen et al., 2009; Orozco et al., 2009), 

we next quantified the number of genic and non-genic CNVRs (Figure 23B and C). We found 

statistically significant differences in the number of duplicated and deleted loci that are genic or 

non-genic (Mann-Whitney U test; p < 0.01 for both genic and non-genic comparisons) revealing 

that there were significantly more deleted genic and non-genic CNVRs than duplicated ones. 

 

CN Diversity in Subtelomeres 

To identify loci that exhibited high CN diversity, we retained only those loci that fell within the 

50th percentile of at least one of our two different measures (log10(s2) and PIC) across the 132 

strains. The distributions of the two measures (Figure S7 from Steenwyk and Rokas, 2017) were 

similar, with 1,326 loci (Figure S7C from Steenwyk and Rokas, 2017) and 291 genes (Figure 

S7D from Steenwyk and Rokas, 2017) identified in the top 50% of CN diverse genes by both 

measures. 

 

In addition, the log10(s2) measure identified an additional 85 loci and 54 genes in its set of top 

50% genes, and PIC an additional 85 loci and 18 genes. In total, our analyses identified 1,502 

loci and 363 genes showing high CN diversity. Among the genes harboring the highest log10(s2) 

and PIC values were YLR154C-G (PIC = 0.96; log10(s2) = 2.16), YLR154W-A (PIC = 0.96; 

log10(s2) = 2.16), YLR154W-B (PIC = 0.96; log10(s2) = 2.16), YLR154W-C (PIC = 0.96; log10(s2) 

= 2.16), YLR154W-E (PIC = 0.96; log10(s2) = 2.16), YLR154W-F (PIC = 0.96; log10(s2) = 2.16) 

and YLR154C-H (PIC = 0.93; log10(s2) = 2.40); these genes are all encoded within the 25S rDNA 

or 35S rDNA locus. The rDNA locus is known to be highly CN diverse (Gibbons et al., 2015) 

thereby demonstrating the utility and efficacy of our CN calling protocol as well as our two 

http://www.yeastgenome.org/locus/S000028561/overview
http://www.yeastgenome.org/locus/S000028675/overview
http://www.yeastgenome.org/locus/S000028563/overview
http://www.yeastgenome.org/locus/S000028422/overview
http://www.yeastgenome.org/locus/S000028676/overview
http://www.yeastgenome.org/locus/S000028843/overview
http://www.yeastgenome.org/locus/S000028562/overview
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measures of CN diversity. We next generated CN diversity maps for all 16 S. cerevisiae 

chromosomes (Figure 23D; Figure S8 from Steenwyk and Rokas, 2017). CN diversity was 

higher in loci and genes located in subtelomeres (defined as the 25 kb of DNA immediately 

adjacent to the chromosome ends; Barton et al. 2003). Specifically, 684 / 1,502 (45.5%) of CN 

diverse loci and 243 / 363 (66.9%) CN diverse genes were located in the subtelomeric regions. 

Conducting  the same analysis using an alternative definition of subtelomere (defined as the 

DNA between the chromosome’s end to the first essential gene (Winzeler et al., 1999)) showed 

similar results. Specifically, 721 / 1,502 (48%) of CN diverse loci and 233 / 363 (64.2%) of CN 

diverse genes were located in the subtelomeric regions. 

 

GO Enrichment of CN Diverse Genes 

To determine the functional categories over- and under-represented in the 363 genes showing 

high CN diversity, we performed GO enrichment analysis. The majority of enriched GO terms 

were associated with metabolic functions such as α-GLUCOSIDASE ACTIVITY (p < 0.01) and 

CARBOHYDRATE TRANSPORTER ACTIVITY (p < 0.01) (Figure 24 and File S3 from Steenwyk and 

Rokas, 2017).  

 

Genes associated with these GO terms include SUC2 (YIL162W, involved in hydrolyzing 

sucrose), all six members from the MAL gene family (involved in the fermentation of maltose 

and other carbohydrates) and all five members of the IMA gene family (involved in isomaltose, 

sucrose and turanose metabolism). Other enriched categories were associated with multi-cellular 

processes such as the FLOCCULATION (p < 0.01) and AGGREGATION OF UNICELLULAR ORGANISMS 

(p = 0.03). All members of the FLO gene family (involved in flocculation) and YHR213W (a  

http://www.yeastgenome.org/locus/S000001424/overview
http://www.yeastgenome.org/locus/S000001256/overview
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Figure 24. GO enriched terms from high CN diverse genes. 

Molecular function (black), biological process (gray), and cellular component (white) GO 

categories are represented by circles, and are enriched among the 363 genes that overlap with CN 

diverse loci. Enriched terms are primarily related to metabolic function, such as α-

GLUCOSIDASE ACTIVITY (P < 0.01), CARBOHYDRATE TRANSPORTER 

ACTIVITY (P < 0.01) and FLOCCULATION (P < 0.01). 

 

flocculin-like gene) were associated with these GO enriched terms. 

 

Contrary to overrepresented GO terms, underrepresented terms were associated with genes 

whose protein products are part of the interactome or protein-protein interactions such as 

PROTEIN COMPLEX (p < 0.01), MACROMOLECULAR COMPLEX ASSEMBLY (p = 0.03), TRANSFERASE 

COMPLEX (p < 0.01) and RIBONUCLEOPROTEIN COMPLEX BIOGENESIS (p = 0.04). Our finding of 

underrepresented GO terms being associated with multi-unit protein complexes supports the 

gene balance hypothesis, which states that the stoichiometry of genes contributing to multi-

subunit complexes must be maintained to conserve kinetics and assembly properties (Birchler 

and Veitia, 2010, 2012). Thus, genes associated with multi-unit protein complexes are unlikely 

to exhibit CN variation.  
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Genic CN Diversity  

To further understand the structure of CN variation in highly diverse CN genes, we first 

calculated the absolute CN of 23 genes associated with GO enriched terms related to wine 

fermentation processes (e.g., metabolic functions; Figure 24 and File S3 from Steenwyk and 

Rokas, 2017) as well as 57 genes with the highest PIC or log10(s2) values (Figure S9 from 

Steenwyk and Rokas, 2017 and File S4 from Steenwyk and Rokas, 2017; 69 total unique genes). 

Among these 69 genes, gene CN ranged from 0 to 92; both the highest CN diversity and absolute 

CN values were observed in segments of the rDNA locus (mentioned above).  

 

Importantly, 35 of the 69 genes have also been reported to have functional roles in fermentation-

related processes. For example, the CNs of PAU3 (YCR104W), a gene active during alcoholic 

fermentation, and its gene neighbor ADH7 (YCR105W), an alcohol dehydrogenase, both varied 

between 0 and 3. Similarly, the absolute CN of the locus containing both CUP1-1 (YHR053C; 

PIC = 0.868) and its paralog CUP1-2 (YHR055C; PIC = 0.879) ranged from 0-14 (Figure 25; 

File S4 from Steenwyk and Rokas, 2017), with 90 strains (68.2%) showing duplications (i.e., a 

CN greater than 1) and another 11 strains (8.3%) a deletion (i.e., a CN of 0). Interestingly, 

multiple copies of CUP1 confer copper resistance to wine strains of S. cerevisiae, with CN 

variation at this locus thought to be associated with domestication (Warringer et al., 2011; Marsit 

and Dequin, 2015).  

 

The expression of SNO family members is induced just prior to or after the diauxic shift as a 

response to nutrient limitation and is associated with vitamin B acquisition (Padilla et al., 1998; 

Rodríguez-Navarro et al., 2002). We found that SNO2 (YNL334C) and SNO3 (YFL060C) were  

http://www.yeastgenome.org/locus/S000000701/overview
http://www.yeastgenome.org/locus/S000000702/overview
http://www.yeastgenome.org/locus/S000001095/overview
http://www.yeastgenome.org/locus/S000001097/overview
http://www.yeastgenome.org/locus/S000005278/overview
http://www.yeastgenome.org/locus/S000001834/overview
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Figure 25. CN variation of genes and gene families. 

Heat map of the CN profiles the CUP, THI, SNO, MAL, IMA, and HXT gene families; rows 

correspond to genes and columns to strains. Blue-colored cells correspond to deletions, black-

colored cells to no CN variation and red-to-purple-colored cells to duplications (ranging from 2 

to 14). Dots on the right side of the figure represent the proportion of individual strains that 

harbor CN variation in that gene—the larger the dot, the greater the proportion of the strains that 

is CN variable for that gene. 

 

among the 363 genes with highest CN diversity. SNO2 was duplicated in 14 strains (10.6%) and 

deleted in 9 strains (6.8%), while SNO3 was deleted in 117 strains (88.6%) (Figure 25). The 

other two members of the SNO gene family, SNO1 (YMR095C) and SNO4 (YMR322C), both 

showed a CN of 1 in all strains. 

 

Another gene family whose members show high CN diversity is the THI gene family, which is 

responsible for thiamine metabolism and is activated at the end of the growth phase during 

http://www.yeastgenome.org/locus/S000004701/overview
http://www.yeastgenome.org/locus/S000004941/overview
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fermentation (Brion et al., 2014). Specifically, THI13 (YDL244W; PIC = 0.759) was among the 

57 genes with the highest CN diversity (File S4 from Steenwyk and Rokas, 2017), and THI5 

(YFL058W) and THI12 (YNL332W) among the 363 most CN diverse genes (File S3 from 

Steenwyk and Rokas, 2017). THI13 was duplicated in 82 strains (62.1%) and deleted in 2 strains 

(1.5%) (Figure 25). In contrast, THI5 was deleted in 121 strains (91.67%), whereas THI12 was 

deleted in 23 strains (17.42%) and duplicated in only 3 strains (2.27%). Lastly, the CN of the last 

THI gene family member, THI11 (YJR156C), did not exhibit CN variation. 

 

In addition to the high CN diversity observed in all six members of the MAL1 and MAL3 loci 

responsible for maltose metabolism and growth on sucrose (Stambuk et al., 2000; Gallone et al., 

2016), MAL13 (YGR288W; PIC = 0.53) was among the 57 genes with the highest CN diversity 

(File S4). Evaluation of the absolute CN of all MAL1 locus genes (Figure 25) showed that 

MAL11, MAL12 (YGR292W), and MAL13 were deleted in 65 (49.2%), 86 (65.2%), and 61 strains 

(46.2%), respectively. In contrast, the MAL3 locus genes MAL31 (YBR298C), MAL32 

(YBR299W), and MAL33 (YBR297W) were duplicated in 100 (75.8%), 99 (75%), and 98 strains 

(74.2%), respectively. Interestingly, we did not observe any deletions in any of the MAL3 locus 

genes across the 132 strains. When considering all members of the MAL gene family, we found 

that the 132 strains differed widely in their degree to which the locus had undergone expansion 

or contraction (Figure S10 from Steenwyk and Rokas, 2017).  

 

All members of the IMA gene family, composed of genes aiding in sugar fermentation (Teste et 

al., 2010), were among the 363 genes with high CN diversity (File S3 from Steenwyk and Rokas, 

2017) and IMA1 (YGR287C; PIC = 0.87) was among the top 57 genes with the highest CN 

http://www.yeastgenome.org/locus/S000002403/overview
http://www.yeastgenome.org/locus/S000001836/overview
http://www.yeastgenome.org/locus/S000005276/overview
http://www.yeastgenome.org/locus/S000003917/overview
http://www.yeastgenome.org/locus/S000003520/overview
http://www.yeastgenome.org/locus/S000003524/overview
http://www.yeastgenome.org/locus/S000000502/overview
http://www.yeastgenome.org/locus/S000000503/overview
http://www.yeastgenome.org/locus/S000000501/overview
http://www.yeastgenome.org/locus/S000003519/overview
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diversity (Files S4 from Steenwyk and Rokas, 2017). IMA1 was deleted in 54 strains (40.9%) 

and duplicated in 50 strains (37.9%) (Figure 25). Although many duplications or deletions did 

not span the entirety of IMA1, there were 4 strains that harbored high CNs between 4 and 6. 

These same four strains also had similar and unique duplications of MAL11 and MAL13, 

suggesting that IMA1, MAL11, and MAL13, which are adjacent to each other in the genome, may 

have been duplicated as one locus. The other isomaltases (IMA2-5; YOL157C, YIL172C, 

YJL221C and YJL216C) were deleted in at least 11 strains (8.3%) and at most 55 strains (41.7%). 

No duplications in IMA2-5 were detected and only rarely in IMA3 (5 strains, 3.8%). Altogether, 

the 132 strains exhibited both expansions and contractions of the IMA gene family (Figure S10 

from Steenwyk and Rokas, 2017).  

 

We identified 7 members of the HXT gene family (HXT6/YDR343C, HXT7/YDR342C, 

HXT9/YJL219W, HXT11/YOL156W, HXT13/YEL069C, HXT15/YDL245C, and 

HXT17/YNR072W), which is involved in sugar transport, that were among the 363 CN diverse 

genes (File S3 from Steenwyk and Rokas, 2017). Members of the HXT gene family were 

duplicated, deleted or had mosaic absolute CN values across the 132 strains. For example, HXT6 

and HXT7 were primarily duplicated in 25 (18.9%) and 22 strains (16.7%), respectively, while 

only 3 strains (2.3%) had deletions in either gene (Figure 25). HXT9, HXT11, HXT15 were 

deleted in 32 (24.2%), 57 (43.2%) and 53 strains (40.2%), respectively, while no strains had 

duplications. Finally, HXT13 was duplicated in 12 strains (9.1%) and deleted in 17 strains 

(12.9%), and HXT17 was duplicated in 37 strains (28%) and deleted in 9 strains (6.8%).  

 

As expansions in the HXT gene family are positively correlated with aerobic fermentation in 

http://www.yeastgenome.org/locus/S000005517/overview
http://www.yeastgenome.org/locus/S000001434/overview
http://www.yeastgenome.org/locus/S000003757/overview
http://www.yeastgenome.org/locus/S000003752/overview
http://www.yeastgenome.org/locus/S000002751/overview
http://www.yeastgenome.org/locus/S000002750/overview
http://www.yeastgenome.org/locus/S000003755/overview
http://www.yeastgenome.org/locus/S000005516/overview
http://www.yeastgenome.org/locus/S000000795/overview
http://www.yeastgenome.org/locus/S000002404/overview
http://www.yeastgenome.org/locus/S000005355/overview
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Saccharomyces paradoxus and S. cerevisiae (Lin and Li, 2011), we also examined the absolute 

CN of all other 10 members (GAL2/YLR081W, HXT1/YHR094C, HXT2/YMR011W, 

HXT4/YHR092C, HXT5/YHR096C, HXT8/YJL214W, HXT10/YFL011W, HXT16/YJR158W, 

RGT2/YDL138W, and SNF3/YDL194W) of the HXT gene family (Figure 25). Interestingly, all 

remaining 10 members of the HXT gene family were not CN variable. Altogether, examination 

of the HXT family CN diversity patterns across the 132 strains suggests that wine yeast strains 

typically exhibit minor contractions (i.e., HXT gene deletions exceed those of duplications) 

relative to the S288c reference strain (Figure S10 from Steenwyk and Rokas, 2017). 

 

All five members of the FLO gene family, which is responsible for flocculation (Govender et al., 

2008), a trait shown to aid in the escape of oxygen limited environments during liquid 

fermentation (Fidalgo et al., 2006; Govender et al., 2008), were found to be among the 363 most 

CN diverse genes. Furthermore, FLO5 (YHR211W; PIC = 0.82) and FLO11 (YIR019C; PIC = 

0.88) were among the 57 genes with the highest CN diversity (File S4 from Steenwyk and 

Rokas, 2017). Due to the importance of site directed CN variation in FLO family genes (Fidalgo 

et al., 2006), we modified our representation of CN variation to display intragenic CN variation 

using a 250 bp window (Figure S11 from Steenwyk and Rokas, 2017). FLO5 was partially 

duplicated in 57 strains (43.2%), partially deleted in 47 strains (35.6%) and 115 strains (87.1%) 

had at least one region of the gene unaffected by CN variation. Duplications and deletions were 

primarily observed in the Threonine-rich region or Serine/Threonine-rich region located in the 

center or end of the FLO5 gene, respectively. To better resolve intra-genic CN variation of 

FLO11, whose repeat unit is shorter than that of FLO5, we recalled CN variants with a smaller 

window size of 25 bp and re-evaluated CN variation (Figure S12 from Steenwyk and Rokas, 

http://www.yeastgenome.org/locus/S000004071/overview
http://www.yeastgenome.org/locus/S000001136/overview
http://www.yeastgenome.org/locus/S000004613/overview
http://www.yeastgenome.org/locus/S000001134/overview
http://www.yeastgenome.org/locus/S000001138/overview
http://www.yeastgenome.org/locus/S000003750/overview
http://www.yeastgenome.org/locus/S000001883/overview
http://www.yeastgenome.org/locus/S000003919/overview
http://www.yeastgenome.org/locus/S000002297/overview
http://www.yeastgenome.org/locus/S000002353/overview
http://www.yeastgenome.org/locus/S000001254/overview
http://www.yeastgenome.org/locus/S000001458/overview
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2017). Using this window size, we found extensive duplications in 97 strains (73.5%) between 

gene coordinates 250-350 bp. Furthermore, duplications were observed in the hydrophobic 

Serine/Threonine-rich regions (Figure S12 from Steenwyk and Rokas, 2017), which are 

associated with the flocculation phenotype (Fidalgo et al., 2006; Ramsook et al., 2010). 

 

In contrast to FLO5 and FLO11, other members of the FLO gene family did not exhibit 

intragenic CN variation. For example, CN variation in FLO1 (YAR050W) and FLO9 (YAL063C) 

typically spanned most or all of the sequence of each gene. Specifically, 125 strains (99.2%) had 

deletions spanning ≥80% of the gene in FLO1 and only 2 strains (1.5%) had the entirety of the 

gene intact. FLO9 had deletions in 99 strains (75%) that spanned ≥75% of the gene, 11 strains 

(8.3%) that had a partial deletion spanning <75% of the gene, whereas 1 strain (0.8%) had a CN 

of 2, and the remaining 21 strains (15.9%) had a CN of 1. In contrast, FLO10 (YKR102W) 

showed limited CN variation. Specifically, 108 strains (81.8%) had no CN variation while 6 

strains (4.5%) had deletions spanning the entirety of the gene. No duplications spanned the 

entirety of the gene but partial duplications were observed in 17 strains (12.9%) and were located 

in or just before the Serine/Threonine-rich region.  

 

Functional Implications CN Variable Genes 

To determine the functional impact of deleted CN variable genes, we examined the relative 

growth of deleted CN variable genes (denoted with the Δ symbol) relative to the wild-type (WT) 

S. cerevisiae strain S288c across 418 conditions using the Hillenmeyer et al. 2008 data (Figure 

S13 from Steenwyk and Rokas, 2017and File S5 from Steenwyk and Rokas, 2017). To determine 

the impact of duplicated genes, we examined growth fitness of the WT strain with low (~2-3 

http://www.yeastgenome.org/locus/S000000084/overview
http://www.yeastgenome.org/locus/S000000059/overview
http://www.yeastgenome.org/locus/S000001810/overview
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gene copies) or high plasmid CN (~8-24 gene copies), where each plasmid contained a single 

gene of interest from previously published data, relative to WT (Figure S14 from Steenwyk and 

Rokas, 2017 and File S6 from Steenwyk and Rokas, 2017; Payen et al. 2016).  

 

Among deleted genes, 42 / 69 genes for which data exist showed negative and positive fitness 

effects in at least one tested condition in the S288c genetic background. Furthermore, we found 

that 12 / 42 genes that are commonly deleted among wine strains typically resulted in a fitness 

gain in conditions that resembled the fermentation environment. These conditions include growth 

at 23°C and at 25°C, temperatures within the 15-28°C range that wine is fermented in (Molina et 

al., 2007) and growth in minimal media, which is commonly used to understand fermentation-

related processes (Seki et al., 1985; Govender et al., 2008; Vilela-Moura et al., 2008).  

 

When examining fitness effects when grown at 23°C or at 25°C for 5 or 15 generations for the 

12 commonly deleted genes, we observed at least one deletion that resulted in a fitness gain or 

loss for each condition. However, we observed extensive deletions in the MAL1 locus (Figure 

25) and therefore prioritized reporting the fitness impact of deletions in MAL11, MAL12 and 

MAL13. ΔMAL11 resulted in a fitness gain for growth at 23°C and 25°C for 5 (0.45X and 0.27X, 

respectively) and 15 generations (0.20X and 0.52X, respectively). ΔMAL12 resulted in a gain of 

fitness at only 25°C after 15 generations (0.46X) and in a loss of fitness ranging from -0.36X to -

1.29X in the other temperature conditions. Similarly, ΔMAL13 resulted in fitness gains and losses 

dependent on the number of generations. For example, when grown for 15 generations at 25°C a 

fitness gain of 0.50X was observed while a fitness loss of -0.82X was observed at 23°C. 
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We next determined the fitness effect of deleted genes in minimal media after 0, 5, and 10 

generations. Similar patterns of complex fitness gain and loss were observed as for the other 

conditions. For example, ΔTHI12 resulted in a loss of fitness of -4.13X and -1.97X after 0 and 5 

generations, but a fitness gain of 0.63X after 10 generations. In contrast, other genes resulted in 

positive fitness effects. For example, ΔMAL12 resulted in a fitness gain of 7.25X and 10.41X for 

0 generations and 10 generations.  

 

Among duplicated genes, we focused on growth in glucose- and phosphate-limited conditions 

because glucose becomes scarce toward the end of fermentation prior to the diauxic shift and 

phosphate limitation is thought to contribute to stuck fermentations (Bisson, 1999; Marsit and 

Dequin, 2015). Among the 35 of the 69 genes where data were available, 14 genes had 

duplications among the 132 strains.  

 

When examining fitness effects of duplicated genes in a glucose-limited environment in the 

S288c background, we found that fitness effects were small in magnitude and dependent on 

condition and plasmid CN (File S6). For example, MAL32 low CN increased growth fitness by 

0.02X but decreased fitness by -0.01X at a high CN (Figure S14 from Steenwyk and Rokas, 

2017). Interestingly, the most prevalent CN for MAL32 across the 132 strains was 2 (96 strains, 

72.7%), with only 3 strains showing a CN of 3 and none a higher CN. Another gene found at low 

CN in 37 strains (28%) was HXT17. Low plasmid CN in a glucose-limited conditions resulted in 

a fitness gain of 0.06X. In contrast, MAL13 low or high plasmid CN resulted in a negative growth 

fitness of -0.02X and -0.01X, respectively. Interestingly, MAL13 duplication is only observed in 4 

strains (3%) and deletions are observed in 61 strains (46.2%). 
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Similar to the glucose-limited condition, we found fitness was dependent on high or low plasmid 

CN in the phosphate-limited condition. For example, MAL31, a gene present at low CN in 100 

strains had a fitness gain of 0.04X at high plasmid CN but low plasmid CN resulted in a fitness 

loss of -0.02X. In contrast, MAL32, which was present at low CN in 99 strains, had a small 

fitness gain of 0.002X at low plasmid CN and a fitness loss at a high plasmid CN of -0.02X. A 

total of 6 genes resulted in a disadvantageous growth effect when present at low CN, such as 

DDR48, which resulted in a fitness loss of -0.04X. Altogether, our results suggest that the deleted 

and duplicated CN variable genes we observe (Figure 26) modulate cellular processes that result 

in advantageous fitness effects in conditions that resemble the fermentation environment.  
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Figure 26. Model summary of CN variable genes in wine yeast strains and their cellular 

functions. 

Genes that are deleted among wine strains are blue, whereas those that are duplicated are in red. 

Genes that were observed to be both duplicated and deleted (IMA1, IMA3, HXT13, and CUP1-1) 

are purple. Disaccharides are in thick-lined boxes, monosaccharides in thin-lined boxes, and 

alcohols are unboxed. 

 

 

Identifying loci absent from CN variation analysis 

The present study was able to capture loci represented in the WT/S288c laboratory strain. To 

identify loci absent from the reference strain, we assembled unmapped reads for 20 strains with 

the lowest percentage of reads mapped and determined their identity (see methods; Figure S4 

from Steenwyk and Rokas, 2017). Across the 20 strains, we identified 429 loci absent from 

S288c but present in other sequenced S. cerevisiae strains. These loci had an average length of 

6.9 kb and an average coverage of 107.2X. The 20 loci with the highest bitscore alongside with 

the number of strains containing the locus are shown in Table S2 from Steenwyk et al. 2021d. 

All but two of these loci were present only in one of the 20 strains we examined. The two 

exceptions were: the EC1118_1N26_0012p locus, which we found in 8 / 20 strains, which 

originates from horizontal gene transfer from Zygosaccharomyces rouxii to the commercial 

EC1118 wine strain of S. cerevisiae (Novo et al., 2009); and the EC1118_1O4_6656p locus, 

which we found in 7 / 20 strains. This locus was also originally found in the EC1118 strain 

(Novo et al., 2009) and contains a gene similar to a conserved hypothetical protein found in S. 

cerevisiae strain AWRI1631 (Borneman et al., 2008). 

 

Discussion 

CN variant loci are known to contribute to the genomic and phenotypic diversity (Perry et al., 
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2007; Cutler and Kassner, 2008; Orozco et al., 2009). However, the extent of CN variation in 

wine strains of S. cerevisiae and its impact on phenotypic variation remains less understood. Our 

examination of structural variation in 132 yeast strains representative of the ‘wine clade’ showed 

that CN variants are a significant contributor to the genomic diversity of wine strains of S. 

cerevisiae. Importantly, CN variant loci overlap with diverse genes and gene families 

functionally related to the fermentation environment such as CUP, FLO, THI, MAL, IMA and 

HXT (summarized in Figure 26).  

 

The characteristics of CN variation in wine yeast (Figure 23A; Figure S6 from Steenwyk and 

Rokas, 2017; Table S1 from Steenwyk and Rokas, 2017) were found to be similar to those of the 

recently described beer yeast lineage (Gallone et al., 2016). For example, both lineages exhibited 

a similar size range of CNVRs (Figure 23A; Figure S6 from Steenwyk and Rokas, 2017; Table 

S1 from Steenwyk and Rokas, 2017) as well as a higher prevalence of CNVRs in the 

subtelomeric regions (Figure 23D). However, wine strains had a smaller fraction of their genome 

affected by CN variation (Figure S6 from Steenwyk and Rokas, 2017) than beer strains (Gallone 

et al., 2016). 

 

Wine yeast strains are thought to be partially domesticated due to the seasonal nature of wine-

making, which allows for outcrossing with wild populations (Marsit and Dequin 2015; Gallone 

et al. 2016; Gonçalves et al. 2016). One human-driven signature of domestication is thought to 

be the duplication of the CUP1 locus because multiple copies confer copper resistance and 

copper sulfates have been used to combat powdery mildews in vineyards since the early 1800s 

(Warringer et al., 2011; Marsit and Dequin, 2015). Consistent with this ‘partial domestication’ 
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view (Marsit and Dequin 2015; Gallone et al. 2016; Gonçalves et al. 2016), many wine strains 

were not CN variable for CUP1-1 and CUP1-2 or had one or both genes deleted (Figure 25).  

 

An alternative, albeit not necessarily conflicting, hypothesis is that wine yeasts underwent 

domestication for specific but diverse wine flavor profiles (Hyma et al., 2011). Consistent with 

this view is the deletion (in >90% of the strains) of the THI5 gene (Figure 25), whose activity is 

known to produce an undesirable rotten-egg sensory perception via higher SH2 production and is 

associated with sluggish fermentations (Bartra et al., 2010). In contrast to wine strains, 

duplications of THI5 have been observed across the Saccharomyces genus, including in several 

strains of S. cerevisiae (CBS1171, 2 copies; S288c, 4 copies; EM93, 5 copies), S. paradoxus (5 

copies), and the lager brewing yeast hybrid Saccharomyces pastorianus (syn. S. carlsbergensis; 

2+ copies) (Wightman and Meacock, 2003). In contrast, THI13, which is duplicated in 62.1% of 

strains, shows an increase in its expression 6-100-fold in S. cerevisiae when grown on medium 

containing low concentrations of thiamine allowing for the compensation of low thiamine levels 

(Li et al., 2010a). Low levels of thiamine in wine fermentation have been associated with stuck 

or slow fermentations (Ough et al., 1989; Bataillon et al., 1996). Similar to THI5 deletions, 

THI13 duplications may have also been driven by human activity due to the advantageous effect 

of increased expression within the fermentation environment.  

 

Two other gene families subject to CN variation were the MAL and HXT gene families. The 

S288c strain that we used as a reference contained two MAL loci (MAL1 and MAL3), each 

containing three genes – a maltose permease (MALx1), a maltase (MALx2), and an MAL trans-

activator (MALx3) – and located near the ends of different chromosomes (Michels et al., 1992). 
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MAL1 has been observed to be duplicated in beer strains of S. cerevisiae (Gallone et al., 2016; 

Gonçalves et al., 2016) while wine strains primarily lack this locus (Figure 25; Gonçalves et al. 

2016). In contrast to the deletion of the MAL1 locus, MAL3 duplication in wine yeasts (Figure 

25; Gonçalves et al. 2016) is surprising because maltose is absent from the grape must (Gallone 

et al., 2016). However, knockout studies have demonstrated MAL32 is necessary for growth on 

turanose, maltotriose, and sucrose (Brown et al., 2010), which are present in small quantities in 

wines (Victoria and Carmen 2013). Due to the prominent duplication of MAL3, in particular the 

enzymatic genes MAL31 and MAL32, we speculate that the MAL3 locus may be utilized to obtain 

sugars less prevalent in the wine environment or serve other purposes. 

 

The HXT gene family in the S288c strain that we used as a reference contains 16 HXT paralogs, 

GAL2, SNF3 and RGT2. The expansion of the HXT gene family is positively correlated with 

aerobic fermentation in S. paradoxus and S. cerevisiae (Lin and Li, 2011). HXT6 and HXT7 are 

high-affinity glucose transporters expressed at low glucose levels and repressed at high glucose 

levels (Reifenberger et al., 1995). In contrast to the recently described Asia (Sake), Britain (Beer) 

and Mosaic lineages (Gallone et al., 2016), we detected duplications in the HXT6 and HXT7 

genes in wine yeasts (Figure 25). This may confer an advantage toward the end of fermentation 

and before the diauxic shift when glucose becomes a scarce resource. Evidence potentially 

supporting this hypothesis is that HXT6 and HXT7 are up-regulated by 9.8 and 5.6-fold, 

respectively, through wine fermentation in the S. cerevisiae strain Vin13 (Marks et al., 2008). 

Furthermore, HXT6 or HXT7 is found to be duplicated in experimentally evolved populations in 

glucose-limited environments (Dunham et al., 2002; Gresham et al., 2008; Dunn et al., 2012). 
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In summary, these results together with recent studies of CN variation in beer yeast strains 

(Gallone et al., 2016; Gonçalves et al., 2016), suggest that this type of variation significantly 

contributes to the genomic diversity of domesticated yeast strains. Furthermore, as most studies 

of CN variation, including ours, use reference strains, they are likely conservative in estimating 

the amount of CN variation present in populations. This caveat notwithstanding, examination of 

publically available data regarding the functional impact of duplicated or deleted genes (again in 

the context provided by the reference strain’s genetic background) suggests that CN variation in 

several, but not all, of the wine yeast genes confer fitness advantages in conditions that resemble 

the fermentation environment. Our results raise the questions of the extent to which CN variation 

contributes to fungal, and more generally microbial, domestication as well as whether the 

importance of CN variants in natural yeast populations, including those of other Saccharomyces 

yeasts, is on par to their importance in domestication environments. 
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CHAPTER 7 

Extensive loss of cell cycle and DNA repair genes in an ancient lineage of bipolar budding 

yeasts6 

 

Introduction 

Genome maintenance is largely attributed to the fidelity of cell cycle checkpoints, DNA repair 

pathways, and their interaction (Lindahl, 1999). Dysregulation of these processes often leads to 

the loss of genomic integrity (Hakem, 2008) and hypermutation, or the acceleration of mutation 

rates (Broustas and Lieberman, 2014). For example, improper control of cell cycle and DNA 

repair processes can lead to 10- to 100-fold increases in mutation rate (Pal et al., 2007). 

Furthermore, deletions of single genes can have profound effects on genome stability. For 

example, the deletion of MEC3, which is involved in sensing DNA damage in the G1 and G2/M 

cell cycle phases, can lead to a 54-fold increase in the gross chromosomal rearrangement rate 

(Myung et al., 2001). Similarly, nonsense mutations in mismatch repair proteins account for the 

emergence of hypermutator strains in the yeast pathogens Cryptococcus deuterogattii (Billmyre 

et al., 2017) and Cryptococcus neoformans (Boyce et al., 2017; Rhodes et al., 2017a). Due to 

their importance in ensuring genomic integrity, most genome maintenance-associated processes 

are thought to be evolutionarily ancient and broadly conserved (Barnum and O’Connell, 2014).  

 

One such ancient and highly conserved process in eukaryotes is the cell cycle  

 

6This work is published in: Steenwyk, J. L., Opulente, D. A., Kominek, J., Shen, X.-X., Zhou, 

X., Labella, A. L., et al. (2019). Extensive loss of cell-cycle and DNA repair genes in an ancient 

lineage of bipolar budding yeasts. PLOS Biol. 17, e3000255. doi:10.1371/journal.pbio.3000255. 
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(Cross et al., 2011; Medina et al., 2016). Landmark features of cell cycle control include cell size 

control, the mitotic spindle checkpoint, the DNA damage response checkpoint, and DNA 

replication (Barnum and O’Connell, 2014). Cell size is controlled, in part, through the activity of 

WHI5, which represses the G1/S transition by inhibiting G1/S transcription (Costanzo et al., 

2004). Similarly, when kinetochores are improperly attached or are not attached to microtubules, 

the mitotic spindle checkpoint helps to prevent activation of the anaphase-promoting complex 

(APC), which controls the G1/S and G2/M transitions (Castro et al., 2005; Barnum and 

O’Connell, 2014). Additional key regulators in this process are Mad1 and Mad2, which dimerize 

at unattached kinetochores and delay anaphase. Failure of Mad1:Mad2 recruitment to unattached 

kinetochores results in failed checkpoint activity (Heinrich et al., 2014). Importantly, many 

regulators, including but not limited to those mentioned here, are highly similar in structure and 

function between fungi and animals and are thought to have a shared ancestry (Cross et al., 

2011). Interestingly, cell cycle initiation in certain fungi (including Hanseniaspora) is achieved 

through SBF, a transcription factor that is functionally equivalent but evolutionarily unrelated to 

E2F, the transcription factor that that initiates the cycle in animals, plants, and certain early-

diverging fungal lineages (Medina et al., 2016). SBF is postulated to have been acquired via a 

viral infection, suggesting that evolutionary changes in this otherwise highly conserved process 

can and do rarely occur (Medina et al., 2016; Hendler et al., 2017). 

 

DNA damage checkpoints can arrest the cell cycle and influence the activation of DNA repair 

pathways, the recruitment of DNA repair proteins to damaged sites, and the composition and 

length of telomeres (Zhou and Elledge, 2000). For example, MEC3 and RAD9, function as 

checkpoint genes required for arrest in the G2 phase after DNA damage has occurred (Weinert et 
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al., 1994). Additionally, the deletions of DNA damage and checkpoint genes have been known to 

cause hypermutator phenotypes in the baker’s yeast Saccharomyces cerevisiae (Serero et al., 

2014). Similarly, hypermutator phenotypes are associated with loss-of-function mutations in 

DNA polymerase genes (Campbell et al., 2017). For example, deletion of the DNA polymerase 𝛿 

subunit gene, POL32, which participates in multiple DNA repair processes, causes an increased 

mutational load and hypermutation in S. cerevisiae, in part, through the increase of genomic 

deletions and small indels (Huang et al., 2000; Serero et al., 2014). Likewise, the deletion of 

MAG1, a gene encoding a DNA glycosylase that removes damaged bases via the multi-step base 

excision repair pathway, can cause a 2,500-fold increased sensitivity to the DNA alkylating 

agent methyl methanesulfonate (Xiao et al., 2001).  

 

In contrast to genes in multi-step DNA repair pathways, other DNA repair genes function 

individually or are parts of simpler regulatory processes. For example, PHR1, a gene that 

encodes a photolyase, is activated in response to and repairs pyrimidine dimers, one of the most 

frequent types of lesions caused by damaging UV light (Sebastian et al., 1990; Sebastian and 

Sancar, 1991). Other DNA repair genes do not interact with DNA but function to prevent the 

misincorporation of damaged bases. For example, PCD1 encodes a 8-oxo-dGTP diphosphatase 

(Nunoshiba, 2004), which suppresses G → T or C → A transversions by removing 8-oxo-dGTP, 

thereby preventing the incorporation of the base 8-oxo-dG, one of the most abundant endogenous 

forms of an oxidatively damaged base (Cartwright et al., 2000; De Bont, 2004; Nunoshiba, 

2004). Collectively, these studies demonstrate that the loss of DNA repair genes can lead to 

hypermutation and increased sensitivity to DNA damaging agents. 
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Hypermutation phenotypes are generally short-lived because most mutations are deleterious and 

are generally adaptive only in highly stressful or rapidly fluctuating environments (Ram and 

Hadany, 2012). For example, in Pseudomonas aeruginosa infections of cystic fibrosis patients 

(Oliver, 2000) and mouse gut-colonizing Escherichia coli (Giraud et al., 2001), hypermutation is 

thought to facilitate adaptation to the host environment and the evolution of drug resistance. 

Similarly, in the fungal pathogens C. deuterogattii (Billmyre et al., 2017), C. neoformans (Boyce 

et al., 2017; Rhodes et al., 2017a), and Candida glabrata (Healey et al., 2016), hypermutation is 

thought to contribute to within-host adaptation, which may involve modulating traits such as 

drug resistance (Healey et al., 2016; Billmyre et al., 2017). However, as adaptation to a new 

environment increases, hypermutator alleles are expected to decrease in frequency due to the 

accumulation of deleterious mutations that result as a consequence of the high mutation rate 

(Sniegowski et al., 1997; Taddei et al., 1997). In agreement with this prediction, half of 

experimentally evolved hypermutating lines of S. cerevisiae had reduced mutation rates after a 

few thousand generations (McDonald et al., 2012), suggesting hypermutation is a short-lived 

phenotype and that compensatory mutations can restore or lower the mutation rate. Additionally, 

this experiment also provided insights to how strains may cope with hypermutation; for example, 

all S. cerevisiae hypermutating lines increased their ploidy to presumably reduce the impact of 

higher mutation rates (McDonald et al., 2012). Altogether, hypermutation can produce short-

term advantages but causes long-term disadvantages, which may explain its repeated but short-

term occurrence in clinical environments (Giraud et al., 2001) and its sparseness in natural ones. 

While these theoretical and experimental studies have provided seminal insights to the evolution 

of mutation rate and hypermutation, we still lack understanding of the long-term, 

macroevolutionary effects of increased mutation rates. 
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Recently, multiple genome-scale phylogenies of species in the budding yeast subphylum 

Saccharomycotina showed that certain species in the bipolar budding yeast genus Hanseniaspora 

are characterized by very long branches (Riley et al., 2016; Shen et al., 2016b, 2018), which are 

reminiscent of the very long branches of fungal hypermutator strains (Billmyre et al., 2017; 

Boyce et al., 2017; Rhodes et al., 2017a). Most of what is known about these cosmopolitan 

yeasts relates to their high abundance on mature fruits and in fermented beverages (Albertin et 

al., 2016), especially on grapes and in wine must (Montero et al., 2004; Jordão et al., 2015). As a 

result, Hanseniaspora plays a significant role in the early stages of fermentation and can modify 

wine color and flavor through the production of enzymes and aroma compounds (Martin et al., 

2018). Surprisingly, even with the use of S. cerevisiae starter cultures, Hanseniaspora species, 

particularly Hanseniaspora uvarum, can achieve very high cell densities, in certain cases 

comprising greater than 80% of the total yeast population, during early stages of fermentation 

(Langenberg et al., 2017), suggesting exceptional growth capabilities in this environment.  

 

To gain insight into the long branches and the observed fast growth of Hanseniaspora, we 

sequenced and extensively characterized gene content and patterns of evolution in 25 genomes, 

including 11 newly sequenced for this study, from 18 / 21 known species in the genus. Our 

analyses showed that species in the genus Hanseniaspora lost many genes involved in diverse 

processes and delineated two lineages within the genus; a faster-evolving lineage (FEL), which 

has a strong signature of acceleration in evolutionary rate at its stem branch and has lost many 

additional genes involved in diverse processes, and a slower-evolving lineage (SEL), which has a 

weaker signature of evolutionary rate acceleration at its stem branch and underwent fewer gene 
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losses. Specifically, compared to S. cerevisiae, there are 748 genes that were lost from two-thirds 

of Hanseniaspora genomes with FEL yeasts having lost an additional 661 genes and SEL yeasts 

having lost only an additional 23. Relaxed molecular clock analyses estimate that the FEL and 

SEL split ~95 million years ago (mya). The degree of evolutionary rate acceleration is 

commensurate with the preponderance of loss of genes associated with cell cycle and DNA 

repair processes. Both lineages have lost major cell cycle regulators, including WHI5 and 

components of the APC, while FEL species additionally lost numerous genes associated with the 

spindle checkpoint (e.g., MAD1 and MAD2) and DNA damage checkpoint (e.g., MEC3 and 

RAD9). Similar patterns are observed among DNA repair-related genes; Hanseniaspora species 

have lost 14 genes, while the FEL yeasts have lost an additional 33 genes. For example, both 

lineages have lost MAG1 and PHR1, while the FEL has lost additional genes including 

polymerases (i.e., POL32 and POL4) and multiple telomere-associated genes (e.g., RIF1, RFA3, 

CDC13, PBP2). Compared to the SEL, analyses of substitution patterns in the FEL show higher 

levels of sequence substitutions, greater instability of homopolymers, and a greater mutational 

signature associated with the commonly damaged base, 8-oxo-dG (De Bont, 2004). Furthermore, 

we find that the transition to transversion (or transition / transversion) ratios of the FEL and the 

SEL are both very close to the ratio expected if transitions and transversions occur neutrally. 

These results are consistent with the hypothesis that species in the FEL represent a novel 

example of diversification and long-term evolutionary survival of a hypermutator lineage, which 

highlights the potential of Hanseniaspora for understanding the long-term effects of 

hypermutation on genome function and evolution. 
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Materials and Methods 

DNA sequencing 

For each species, genomic DNA (gDNA) was isolated using a two-step phenol:chloroform 

extraction previously described to remove additional proteins from the gDNA (Shen et al., 2018). 

The gDNA was sonicated and ligated to Illumina sequencing adaptors as previously described 

(Hittinger et al., 2010), and the libraries were submitted for paired-end sequencing (2 x 250) on 

an Illumina HiSeq 2500 instrument. 

 

Phenotyping 

We qualitatively measured growth of species on five carbon sources (maltose, raffinose, sucrose, 

melezitose, and galactose) as previously described in (Shen et al., 2018). We used a minimal 

media base with ammonium sulfate and all carbon sources were at a 2% concentration. Yeast 

were initially grown in YPD and transferred to carbon treatments. Species were visually scored 

for growth for about a week on each carbon source in three independent replicates over multiple 

days. A species was considered to utilize a carbon source if it showed growth across ≥ 50% of 

biological replicates. Growth data for Hanseniaspora gamundiae were obtained from Čadež et 

al., 2019. 

 

Genome assembly and annotation 

To generate de novo genome assemblies, we used paired-end DNA sequence reads as input to 

iWGS, version 1.1 (Zhou et al., 2016), a pipeline which uses multiple assemblers and identifies 

the “best” assembly according to largest genome size and N50 (i.e., the shortest contig length 

among the set of the longest contigs that account for 50% of the genome assembly’s length) 
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(Yandell and Ence, 2012) as described in (Shen et al., 2018). More specifically, sequenced reads 

were first quality-trimmed, and adapter sequences were removed used TRIMMOMATIC, version 

0.33 (Bolger et al., 2014), and LIGHTER, version 1.1.1 (Song et al., 2014). Subsequently, 

KMERGENIE, version 1.6982 (Chikhi and Medvedev, 2014), was used to determine the optimal k-

mer length for each genome individually. Thereafter, six de novo assembly tools (i.e., ABYSS, 

version 1.5.2 (Simpson et al., 2009); DISCOVAR, release 51885 (Weisenfeld et al., 2014); 

MASURCA, version 2.3.2 (Zimin et al., 2013); SGA, version 0.10.13 (Simpson and Durbin, 

2012); SOAPDENOVO2, version 2.04 (Luo et al., 2012); and SPADES, version 3.7.0 (Bankevich 

et al., 2012)) were used to generate genome assemblies from the processed reads. Using QUAST, 

version 4.4 (Gurevich et al., 2013), the best assembly was chosen according to the assembly that 

provided the largest genome size and best N50. 

 

Annotations for eight of the Hanseniaspora genomes (i.e., H. clermontiae, H. osmophila CBS 

313, H. pseudoguilliermondii, H. singularis, H. uvarum DSM2768, H. valbyensis, H. vineae T02 

19AF, and K. hatyaiensis) and the four outgroup species (i.e., Cy. jadinii, K. marxianus, S. 

cerevisiae, and W. anomalus) were generated in a recent comparative genomic study of the 

budding yeast subphylum (Shen et al., 2018). The other 11 Hanseniaspora genomes examined 

here were annotated by following the same protocol as in (Shen et al., 2018). 

 

In brief, the genomes were annotated using the MAKER pipeline, version 2.31.8 (Holt and 

Yandell, 2011). The homology evidence used for MAKER consists of fungal protein sequences 

in the SwissProt database (release 2016_11) and annotated protein sequences of select yeast 

species from MYCOCOSM (Grigoriev et al., 2014), a web portal developed by the US Department 
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of Energy Joint Genome Institute for fungal genomic analyses. Three ab initio gene predictors 

were used with the MAKER pipeline, including GENEMARK-ES, version 4.32 (Ter-

Hovhannisyan et al., 2008); SNAP, version 2013-11-29 (Korf, 2004); and AUGUSTUS, version 

3.2.2 (Stanke and Waack, 2003), each of which was trained for each individual genome. 

GENEMARK-ES was self-trained on the repeat-masked genome sequence with the fungal-specific 

option (“–fugus”), while SNAP and AUGUSTUS were trained through three iterative MAKER 

runs. Once all three ab initio predictors were trained, they were used together with homology 

evidence to conduct a final MAKER analysis in which all gene models were reported 

(“keep_preds” set to 1), and these comprise the final set of annotations for the genome. 

 

Data acquisition 

All publicly available Hanseniaspora genomes, including multiple strains from a single species, 

were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/; S1 File). These species and 

strains include H. guilliermondii UTAD222 (Seixas et al., 2017), H. opuntiae AWRI3578, H. 

osmophila AWRI3579, H. uvarum AWRI3580 (Sternes et al., 2016), H. uvarum 34-9, H. vineae 

T02-19AF (Giorello et al., 2014), H. valbyensis NRRL Y-1626 (Riley et al., 2016), and H. 

gamundiae  (Čadež et al., 2019). We also included Saccharomyces cerevisiae S288C, 

Kluyveromyces marxianus DMKU3-1042, Wickerhamomyces anomalus NRRL Y-366-8, and 

Cyberlindnera jadinii NRRL Y-1542, four representative budding yeast species that are all 

outside the genus Hanseniaspora (Shen et al., 2018), which we used as outgroups. Together with 

publicly available genomes, our sampling of Hanseniaspora encompasses all known species in 

the genus (or its anamorphic counterpart, Kloeckera), except Hanseniaspora lindneri, which 

likely belongs to the FEL based on a four-locus phylogenetic study (Cadez, 2006), and 

https://www.ncbi.nlm.nih.gov/;
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Hanseniaspora taiwanica, which likely belongs to the SEL based on neighbor-joining analyses 

of the LSU rRNA gene sequence (Chang et al., 2012).  

 

Assembly assessment and identification of orthologs 

To determine genome assembly completeness, we calculated contig N50 (Yandell and Ence, 

2012) and assessed gene content completeness using multiple databases of curated orthologs 

from BUSCO, version 3 (Waterhouse et al., 2018a). More specifically, we determined gene 

content completeness using orthologous sets of genes constructed from sets of genomes 

representing multiple taxonomic levels, including Eukaryota (superkingdom; 100 species; 303 

BUSCOs), Fungi (kingdom; 85 species; 290 BUSCOs), Dikarya (subkingdom; 75 species; 1,312 

BUSCOs), Ascomycota (phylum; 75 species; 1,315 BUSCOs), Saccharomyceta (no rank; 70 

species; 1,759 BUSCOs), and Saccharomycetales (order; 30 species; 1,711 BUSCOs).  

 

Genomes sequenced in the present project were sequenced at an average depth of 63.49 ± 52.57 

(S1 File). Among all Hanseniaspora, the average scaffold N50 was 269.03 ± 385.28 kb, the 

average total number of scaffolds was 980.36 ± 835.20 (398.32 ± 397.97 when imposing a 1kb 

scaffold filter), and the average genome assembly size was 10.13 ± 1.38 Mb (9.93 ± 1.35 Mb 

when imposing a 1kb scaffold filter). Notably, the genome assemblies and gene annotations 

created in the present project were comparable to publicly available ones. For example, the 

genome size of publicly available Hanseniaspora vineae T02 19AF is 11.38 Mb with 4,661 

genes, while our assembly of Hanseniaspora vineae NRRL Y-1626 was 11.15 Mb with 5,193 

genes. 
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We found that our assemblies were of comparable quality to those from publicly available 

genomes. For example, Hanseniaspora uvarum NRRL Y-1614 (N50 = 267.64 kb; genome size = 

8.82 Mb; number of scaffolds = 258; gene number = 4,227), which was sequenced in the present 

study, and H. uvarum AWRI3580 (N50 = 1,289.09 kb; genome size = 8.81 Mb; number of 

scaffolds = 18; gene number = 4,061), which is publicly available (Sternes et al., 2016) had 

similar single-copy BUSCO genes present in the highest and lowest ORTHODB (Waterhouse et 

al., 2013) taxonomic ranks (Eukaryota and Saccharomycetales, respectively). Specifically, H. 

uvarum NRRL Y-1614 and H. uvarum AWRI3580 had 80.20% (243 / 303) and 79.87% (242 /  

303) of universally single-copy orthologs in Eukaryota present in each genome respectively, and 

52.31% (895 / 1,711) and 51.49% (881 / 1,711) of universally single-copy orthologs in 

Saccharomycetales present in each genome, respectively. 

 

To identify single-copy orthologous genes (OGs) among all protein coding sequences for all 29 

taxa, we used ORTHOMCL, version 1.4 (Li et al., 2003). ORTHOMCL clusters genes into OGs 

using a Markov clustering algorithm [122; https://micans.org/mcl/)] from gene similarity 

information acquired from a blastp ‘all-vs-all’ using NCBI’s BLAST+, version 2.3.0 (S2 Fig from 

Steenwyk et al., 2019a; (Camacho et al., 2009)) and the proteomes of species of interest as input. 

The key parameters used in blastp ‘all-vs-all’ were: e-value = 1e-10, percent identity cut-off = 

30%, percent match cutoff = 70%, and a maximum weight value = 180. To conservatively 

identify OGs, we used a strict ORTHOMCL inflation parameter of 4. 

 

To identify additional OGs suitable for use in phylogenomic and molecular sequence analyses, 

we identified the single best putatively orthologous gene from OGs with full species 
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representation and a maximum of two species with multiple copies using PHYLOTREEPRUNER, 

version 1.0 (Kocot et al., 2013). To do so, we first aligned and trimmed sequences in 1,143 OGs 

out a total of 11,877 that fit the criterion of full representation and a maximum of two species 

with duplicate sequences. More specifically, we used MAFFT, version 7.294b (Katoh and 

Standley, 2013), with the BLOSUM62 matrix of substitutions (Mount, 2008), a gap penalty of 1.0, 

1,000 maximum iterations, the ‘genafpair’ parameter, and TRIMAL, version 1.4 (Capella-

Gutierrez et al., 2009), with the ‘automated1’ parameter to align and trim individual sequences, 

respectively. The resulting OG multiple sequence alignments were then used to infer gene 

phylogenies using FASTTREE, version 2.1.9 (Price et al., 2010), with 4 and 2 rounds of subtree-

prune-regraft and optimization of all 5 branches at nearest-neighbor interchanges, respectively, 

as well as the ‘slownni’ parameter to refine the inferred topology. Internal branches with support 

lower than 0.9 Shimodaira-Hasegawa-like support implemented in FASTTREE (Price et al., 2010) 

were collapsed using PHYLOTREEPRUNER, version 1.0 (Kocot et al., 2013), and the longest 

sequence for species with multiple sequences per OG were retained, resulting a robust set of OGs 

with every taxon being represented by a single sequence. OGs were realigned (MAFFT) and 

trimmed (TRIMAL) using the same parameters as above.  

 

Phylogenomic analyses 

To infer the Hanseniaspora phylogeny, we performed phylogenetic inference using maximum 

likelihood (Felsenstein, 1981) with concatenation (Rokas et al., 2003; Philippe et al., 2005) and 

coalescence (Edwards, 2009) approaches. To determine the best-fit phylogenetic model for 

concatenation and generate single-gene trees for coalescence, we constructed trees per single-

copy OG using RAXML, version 8.2.8. (Stamatakis, 2014a), where each topology was 
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determined using 5 starting trees. Single-gene trees that did not recover all outgroup species as 

the earliest diverging taxa when serially rooted on outgroup taxa were discarded. Individual OG 

alignments or trees were used for species tree estimation with RAXML (i.e., concatenation) using 

the LG (Le and Gascuel, 2008) model of substitution, which is the most commonly supported 

model of substitution (874 / 1,034;  84.53% genes), or ASTRAL-II, version 4.10.12 (i.e., 

coalescence) (Mirarab and Warnow, 2015). Branch support for the concatenation and 

coalescence phylogenies was determined using 100 rapid bootstrap replicates (Stamatakis et al., 

2008) and local posterior support (Edwards, 2009), respectively.  

 

Several previous phylogenomic studies have shown that the internal branches preceding the 

Hanseniaspora FEL and SEL are long (Riley et al., 2016; Shen et al., 2016b). To examine 

whether the relationship between the length of the internal branch preceding the FEL and the 

length of the internal branch preceding the SEL was consistent across genes in our phylogeny, 

we used NEWICK UTILITIES, version 1.6 (Junier and Zdobnov, 2010) to remove the 88 single-

gene trees where either lineage was not recovered as monophyletic and calculated their 

difference for the remaining 946 genes.  

 

Estimating divergence times 

To estimate divergence times among the 25 Hanseniaspora genomes, we used the Bayesian 

method MCMCTree in the PAML, version 4.9 (Yang, 2007), and the concatenated 1,034-gene 

matrix. The input tree was derived from the concatenation-based ML analysis under a single 

LG+G4 (Le and Gascuel, 2008) model (Fig 27A). The in-group root (i.e., the split between the 
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FEL and SEL) age was set between 0.756 and 1.177 time units (1 time unit = 100 million years 

ago [mya]), which was adopted from a recent study (Shen et al., 2018). 

 

 

 
Fig 27. The evolutionary history, rate, and timeline of Hanseniaspora diversification. 

(A) Phylogenomic and relaxed molecular clock analysis of 1,034 single-copy OGs from a near-

complete set of Hanseniaspora species revealed two well-supported lineages termed the FEL and 

SEL, which began diversifying around 87.2 and 53.6 mya after diverging 95.3 mya. (B) Among 

single-gene phylogenies in which the FEL and SEL were monophyletic (n = 946), the FEL stem 

branch was consistently and significantly longer (0.62 ± 0.38 base substitutions/site) than the 

SEL stem branch (0.17 ± 0.11 base substitutions/site) (p < 0.001; paired Wilcoxon rank–sum 

test). (C) Examination of the difference between FEL and SEL: stem branch lengths per single-

gene tree revealed that 932 single-gene phylogenies had a longer FEL stem branch (depicted in 

orange with values greater than 0), while only 14 single-gene phylogenies had a longer SEL stem 

branch (depicted in blue with values less than 0). Across all single-gene phylogenies, the average 
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difference in stem branch length between the two lineages was 0.45. 

figshare: https://doi.org/10.6084/m9.figshare.7670756.v2. AWRI, Australian Wine Research 

Institute; CBS, Centraalbureau voor Schimmelcultures; DSM2768, Dutch State Mines 2768; Eo., 

Eocene; FEL, faster-evolving lineage; Mio., Miocene; mya, million years ago; NRRL, Northern 

Regional Research Laboratory; OG, orthologous gene; Oligo., Oligocene; Paleo., Paleocene; 

Pleisto., Pleistocene; Plio., Pliocene; Quat., Quaternary; SEL, slower-evolving lineage; 

UTAD222, University of Trás-os-Montes and Alto Douro 222. 

 

To infer the Hanseniaspora timetree, we first estimated branch lengths under a single LG+G4 

(Le and Gascuel, 2008) model with codeml in the PAML, version 4.9 (Yang, 2007), package and 

obtained a rough mean of the overall mutation rate. Next, we applied the approximate likelihood 

method (Reis and Yang, 2011; dos Reis et al., 2016) to estimate the gradient vector and Hessian 

matrix with Taylor expansion (option usedata = 3). Last, we assigned (a) the gamma-Dirichlet 

prior for the overall substitution rate (option rgene_gamma) as G(1, 1.55), with a mean of 0.64, 

(b) the gamma-Dirichlet prior for the rate-drift parameter (option sigma2 gamma) as G(1, 10), 

and (c) the parameters for the birth-death sampling process with birth and death rates λ=μ=1 and 

sampling fraction ρ=0. We employed the independent-rate model (option clock=2) to account for 

the rate variation across different lineages and used soft bounds (left and right tail probabilities 

equal 0.025) to set minimum and maximum values for the in-group root mentioned above. The 

MCMC run was first run for 1,000,000 iterations as burn-in and then sampled every 1,000 

iterations until a total of 30,000 samples was collected. Two separate MCMC runs were 

compared for convergence, and similar results were observed. 

 

Gene presence and absence analysis 

To determine the presence and absence of genes in Hanseniaspora genomes, we built hidden 

Markov models (HMMs) for each gene present in Saccharomyces cerevisiae and used the 

https://doi.org/10.6084/m9.figshare.7670756.v2
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resulting HMM profile to search for the corresponding homolog in each Hanseniaspora genome, 

as well as outgroup taxa. More specifically, for each of the 5,917 verified open reading frames 

from S. cerevisiae (Cherry et al., 2012a) (downloaded Oct 2018 from the Saccharomyces 

genome database), we searched for putative homologs in NCBI’s Reference Sequence Database 

for Fungi (downloaded June 2018) using NCBI’s BLAST+, version 2.3.0 (Madden, 2013), blastp 

function, and an e-value cut-off of 1e-3 as recommended for homology searches (Pearson, 2013). 

We used the top 100 hits for the gene of interest and aligned them using MAFFT, version 7.294b 

(Katoh and Standley, 2013), with the same parameters described above. The resulting gene 

alignment was then used to create an HMM profile for the gene using the hmmbuild function in 

HMMER, version 3.1b2 (Eddy, 2011). The resulting HMM profile was then used to search for 

each individual gene in each Hanseniaspora genome and outgroup taxa using the hmmsearch 

function with an expectation value cutoff of 0.01 and a score cutoff of 50. This analysis was 

done for the 5,735 genes with multiple blast hits allowing for the creation of a HMM profile. To 

evaluate the validity of constructed HMMs, we examined their ability to recall genes in S. 

cerevisiae and found that we recovered all nuclear genes. 

 

To determine if any functional categories were over- or under-represented among genes present 

or absent among Hanseniaspora species, we conducted gene ontology (GO) 

(GeneOntologyConsortium, 2004) enrichment analyses using GOATOOLS, version 0.7.9 

(Klopfenstein et al., 2018). We used a background of all S. cerevisiae genes and a p-value cut-off 

of 0.05 after multiple-test correction using the Holm method (Holm, 1979). Plotting gene 

presence and absence among pathways was done by examining depicted pathways available 



194  

through the KEGG project (Kanehisa et al., 2016) and the Saccharomyces Genome Database 

(Cherry et al., 2012a). 

 

We examined the validity of the gene presence and absence pipeline by examining under-

represented terms and the presence or absence of essential genes in S. cerevisiae (Winzeler et al., 

1999). We hypothesized that under-represented GO terms will be associated with basic 

molecular processes and that essential genes will be under-represented among the set of absent 

genes. In agreement with these expectations, GO terms associated with basic biological 

processes and essential S. cerevisiae genes are under-represented among genes that are absent 

across Hanseniaspora genomes. For example, among all genes absent in the FEL and SEL, the 

molecular functions BASE PAIRING, GO:0000496 (p < 0.001); GTP BINDING, GO:0005525 

(p < 0.001); and ATPASE ACTIVITY, COUPLED TO MOVEMENT OF SUBSTANCES, 

GO:0043492 (p < 0.001), are significantly under-represented (S4 File). Similarly, S. cerevisiae 

essential genes are significantly under-represented (p < 0.001; Fischer’s exact test for both 

lineages) among lost genes with 134 and 23 S. cerevisiae essential genes having been lost from 

the FEL and SEL genomes, respectively (lists of essential S. cerevisiae genes absent among 

Hanseniaspora genomes are available through figshare 10.6084/m9.figshare.7670756). 

 

Ploidy estimation 

To determine ploidy, we leveraged base frequency distributions at variable sites by mapping 

each genome’s reads to its assembly. This approach is widely employed to determine ploidy 

from next generation sequencing data and has been implemented in several pieces of software 

(Boeva et al., 2012; Augusto Corrêa dos Santos et al., 2017; Weiß et al., 2018) and studies 
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(Yoshida et al., 2013; Zhu et al., 2016). In short, examination of base frequency distributions 

between a frequency of 20 and 80 can provide insight into ploidy status. More specifically, 

haploid genomes lack biallelic sites so their base frequency distributions will peak at high and 

low base frequencies and be depleted in positions with base frequencies near 50 (or a ‘smiley-

pattern’); diploid genomes typically have two alleles for a locus and are expected to exhibit a 

unimodal distribution centered around a base frequency of 50; finally, triploid genomes typically 

have one allele on one chromosome and the other allele in the other two chromosomes and are 

expected to exhibit a bimodal distribution centered around base frequencies of 33 and 66. Note 

that this approach assumes that there is a sufficient amount of heterozygosity in the genome, and 

that ploidy changes may be go undetected in genomes lacking heterozygosity. To ensure high-

quality read mapping, we first quality-trimmed reads suing TRIMMOMATIC, version 0.36 (Bolger 

et al., 2014), using the parameters leading:10, trailing:10, slidingwindow:4:20, and minlen:50. 

Reads were subsequently mapped to their respective genome using BOWTIE2, version 1.1.2 

(Langmead and Salzberg, 2012), with the “sensitive” parameter and converted the resulting file 

to a sorted bam format using SAMTOOLS, version 1.3.1 (Li et al., 2009a). We next used NQUIRE 

(Weiß et al., 2018), which extracts base frequency information at segregating sites with a 

minimum frequency of 0.2. Prior to visualization, we removed background noise by utilizing the 

Gaussian Mixture Model with Uniform noise component (Weiß et al., 2018). 

 

Molecular evolution and mutation analysis 

Molecular sequence rate analysis along the phylogeny. 

To determine the rate of sequence evolution over the course of Hanseniaspora evolution, we 

examined variation in the rate of nonsynonymous (dN) to the rate of synonymous (dS) 
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substitutions (dN/dS or ω) across the species phylogeny. We first obtained codon-based 

alignments of the protein sequences used during phylogenomic inference by threading 

nucleotides on top of the amino acid sequence using PAL2NAL, version 14 (Suyama et al., 2006), 

and calculated ω values under the different hypotheses using the CODEML module in PAML, 

version 4.9 (Yang, 2007). For each gene tested, we set the null hypothesis (Ho) where all internal 

branches exhibit the same ω (model = 0) and compared it to four different alternative hypotheses. 

Under the HFEL-SEL branch hypothesis, the branches immediately preceding the FEL and SEL were 

assumed to exhibit distinct ω values from the background (model = 2) (Fig 28Bi). Under the 

HFEL hypothesis, the branch immediately preceding the FEL was assumed to have a distinct ω 

value, all FEL crown branches were assumed to have their own collective ω value, and all 

background branches were assumed to have their own collective ω value (model = 2) (Fig 28Ci). 

The HSEL hypothesis assumed the branch preceding the lineage had its own ω value, all SEL 

crown branches had their own collective ω value, and all background branches were assumed to 

have their own collective ω value (model = 2) (Fig 28Di). Lastly, the HFEL-SEL crown hypothesis 

assumed that all FEL crown branches had their own collective ω value, all SEL crown branches 

had their own collective ω value, and the rest of the branches were assumed to have their own 

collective ω value (model = 2) (Fig 28Ei). To determine if each of the alternative hypotheses was 

significantly different from the null hypothesis, we used the likelihood ratio test (LRT) (α = 

0.01). A few genes could not be analyzed due to fatal interruptions or errors during use in PAML, 

version 4.9 (Yang, 2007), which have been reported by other users (Liu et al., 2017); these genes 

were removed from the analysis. Thus, this analysis was conducted for 989 genes for three tests 

(HFEL-SEL branch, HFEL, and HSEL hypotheses) and 983 genes for one test (HFEL-SEL crown hypothesis). 
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Fig 28. dN/dS (ω) analyses support a historical burst of accelerated evolution in the FEL. 

(A) The null hypothesis (HO) that all branches in the phylogeny have the same ω value. 

Alternative hypotheses (B–E) evaluate ω along three sets of branches. (Bi) The alternative 

hypothesis (HFEL–SEL branch) examined ω values along the FEL and SEL stem branches. (Bii) 311 

(31.45%) genes supported HO, and 678 (68.55%) genes supported HFEL–SEL branch. (Biii) Among 

the genes that supported HFEL–SEL branch, we examined the distribution of the difference between 

ω1 and ω2 as specified in part Bi. Here, a range of ω1–ω2 of −3.5 to 3.5 is shown in the 

histogram. Additionally, we report the median ω1 and ω2 values, which are 0.57 and 0.29, 

respectively. (Biv) 384 (38.83%) genes significantly rejected HO and were faster in the FEL than 

the SEL, while 237 (23.96%) significantly rejected HO and were faster in the SEL than the FEL. 
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(Ci) The alternative hypothesis (HFEL) examined ω values along the FEL stem branch (ω1) and 

crown branches (ω2). (Cii) 246 (24.87%) genes supported HO, and 743 (75.13%) genes supported 

HFEL. (Ciii) Among the genes that supported HFEL, we examined the distribution of the difference 

between ω1 and ω2 as specified in part Ci. The median ω1 and ω2 values were 0.71 and 0.06, 

respectively. (Civ) 725 (73.31%) genes significantly rejected HO and had higher ω1 values than 

ω2 values, while 18 (1.82%) genes significantly rejected HO and had higher ω2 than ω1 values. 

(Di) The alternative hypothesis (HSEL) examined ω values along the SEL stem branch (ω1) and 

crown branches (ω2). (Dii) 455 (46.29%) genes supported HO, and 528 (53.71%) genes supported 

HSEL. (Diii) Among the genes that supported HSEL, we examined the distribution of the difference 

between ω1 and ω2 as specified in part Di. The median ω1 and ω2 values were 0.27 and 0.07, 

respectively. (Div) 481 (48.93%) genes significantly rejected HO and had higher ω1 than 

ω2 values, while 47 (4.78%) genes significantly rejected HO and had higher ω2 than ω1 values. 

(Ei) The alternative hypothesis (HFEL–SEL crown) examined ω values in the FEL crown branches 

(ω1) and SEL crown branches (ω2). (Eii) 272 (27.50%) genes supported HO, and 717 (72.50%) 

genes supported HFEL–SEL crown. (Eiii) Among the genes that supported HFEL–SEL crown, we 

examined the distribution of the difference between ω1 and ω2 as specified in part Di. The 

median ω1 and ω2 values were 0.06 and 0.07, respectively. (Eiv) 481 (21.54%) genes 

significantly rejected HO and had higher ω1 than ω2 values, while 504 (50.96%) genes had higher 

ω2 than ω1 values. figshare: https://doi.org/10.6084/m9.figshare.7670756.v2. dN, rate of 

nonsynonymous substitutions; dS, rate of synonymous subsitutions; FEL, faster-evolving 

lineage; SEL, slower-evolving lineage. 

 

Examination of mutational signatures 

To conservatively identify base substitutions, insertions, and deletions found in taxa in the FEL 

or SEL, we examined the status of each nucleotide at each position in codon-based and amino 

acid-based OG alignments. We examined base substitutions, insertions, and deletions at sites that 

are conserved in the outgroup (i.e., all outgroup taxa have the same character state for a given 

position in an alignment). For base substitutions, we determined if the nucleotide or amino acid 

residue in a given Hanseniaspora species differed from the conserved outgroup nucleotide or 

amino acid residue at the same position. To measure if amino acid substitutions in each lineage 

were conservative or radical (i.e., a substitution to a similar amino acid residue versus a 

substitution to an amino acid residue with different properties), we used Sneath’s index of 

dissimilarity, which considers 134 categories of biological activity and chemical change to 

https://doi.org/10.6084/m9.figshare.7670756.v2
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quantify dissimilarity of amino acid substitutions, and Epstein’s coefficient of difference, which 

considers differences in polarity and size of amino acids to quantify dissimilarity. Notably, 

Sneath’s index is symmetric (i.e., isoleucine to leucine is equivalent to leucine to isoleucine), 

whereas Epstein’s coefficient is not (i.e., isoleucine to leucine is not equivalent to leucine to 

isoleucine). For indels, we used a sliding window approach with a step size of one nucleotide. 

We considered positions where a nucleotide was present in all outgroup taxa but a gap was 

present in Hanseniaspora as deletions, and positions where a gap was present in all outgroup 

taxa and a nucleotide was present in Hanseniaspora species as insertions. Analyses were 

conducted using custom PYTHON, version 3.5.2 (https://www.python.org/), scripts, which use the 

BIOPYTHON, version 1.70 (Cock et al., 2009a), and NUMPY, version 1.13.1 (Van Der Walt et al., 

2011), modules. 

 

We discovered that all Hanseniaspora species lack the PHR1 gene, which is associated with the 

repair of UV radiation damage but the FEL has lost additional genes that participate in other 

pathways that can repair UV damage like the base-excision and nucleotide-excision repair 

pathway (Huang et al., 2000; Budden and Bowden, 2013). UV radiation induces high levels of C 

→ T substitutions at CC sites and more rarely double substitutions of CC → TT (Ikehata and 

Ono, 2011; Huang et al., 2017). To examine signatures of UV radiation damage across 

Hanseniaspora, we examined the number of C → T substitutions at CC sites (or G → A 

substitutions at GG sites) as well as the less frequent CC → TT (or GG → AA) double 

substitutions. 
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Results 

An exceptionally high evolutionary rate in the FEL stem branch 

Concatenation and coalescence analyses of a data matrix of 1,034 single-copy orthologous genes 

(OGs) (522,832 sites; 100% taxon-occupancy) yielded a robust phylogeny of the genus 

Hanseniaspora (Fig 27A, S1 Fig from Steenwyk et al., 2019a, S2 Fig from Steenwyk et al., 

2019a). Consistent with previous analyses (Shen et al., 2016b, 2018; Čadež et al., 2019), our 

phylogeny identified two major lineages, each of which had a long stem branch; we hereafter 

refer to the lineage with the longer stem branch as the faster-evolving lineage (FEL) and to the 

other as the slower-evolving lineage (SEL). Relaxed molecular clock analysis suggests that the 

FEL and SEL split 95.34 (95% credible interval (CI): 117.38 – 75.36) mya, with the origin of 

their crown groups estimated at 87.16 (95% CI: 112.75 – 61.38) and 53.59 (95% CI: 80.21 – 

33.17) mya, respectively (Fig 27A, S3 Fig from Steenwyk et al., 2019a and S2 File from 

Steenwyk et al., 2019a). 

 

The FEL stem branch is much longer than the SEL stem branch in the Hanseniaspora phylogeny 

(Fig 27) (see also phylogenies in: (Shen et al., 2016b, 2018)). To determine whether this 

difference in branch length was a property of some or all single-gene phylogenies, we compared 

the difference in length of the FEL and SEL stem branches among all single-gene trees where 

each lineage was recovered monophyletic (n = 946). We found that the FEL stem branch was 

nearly four times longer (0.62 ± 0.38 substitutions / site) than the SEL stem branch (0.17 ± 0.11 

substitutions / site) (Fig 27B; p < 0.001; Paired Wilcoxon Rank Sum test). Furthermore, of the 

946 gene trees examined, 932 had a much longer FEL stem branch (0.46 ± 0.33 Δ substitutions / 

site), whereas only 14 had a slightly longer SEL stem branch (0.06 ± 0.05 Δ substitutions / site).  
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The genomes of FEL species have lost substantial numbers of genes 

Examination of GC content, genome size, and gene number revealed that the some of the lowest 

GC content values, as well as the smallest genomes and lowest gene numbers, across the 

subphylum Saccharomycotina are primarily observed in FEL yeasts (S4 Fig from Steenwyk et 

al., 2019a). Specifically, the average GC contents for FEL yeasts (33.10 ± 3.53%), SEL yeasts 

(37.28 ± 2.05%), and all other Saccharomycotina yeasts (40.77 ± 5.58%) are significantly 

different from one another (χ2(2) = 30.00, p < 0.001; Kruskal-Wallis rank sum test). Pairwise 

comparisons of GC contents between FEL, SEL, and all other Saccharomycotina were not 

significant, except in the comparison between the FEL and other Saccharomycotina yeasts (p < 

0.001; Dunn’s test for multiple comparisons with Benjamini-Hochberg multi-test correction).  

 

For genome size and gene number, FEL yeast genomes have average sizes of 9.71 ± 1.32 Mb 

and contain 4,707.89 ± 633.56 genes, respectively, while SEL yeast genomes have average sizes 

of 10.99 ± 1.66 Mb and contain 4,932.43 ± 289.71 genes. In contrast, all other Saccharomycotina 

have average genome sizes and gene numbers of 13.01 ± 3.20 Mb and 5,726.10 ± 1,042.60, 

respectively. Statistically significant differences were observed between the FEL, SEL, and all 

other Saccharomycotina (genome size: χ2(2) = 33.47, p < 0.001 and gene number: χ2(2) = 31.52, 

p < 0.001; Kruskal-Wallis rank sum test for both). Pairwise comparisons of genome size and 

gene number between FEL, SEL, and all other Saccharomycotina revealed that the only 

significant difference for genome size was between FEL and other Saccharomycotina yeasts (p < 

0.001; Dunn’s test for multiple comparisons with Benjamini-Hochberg multi-test correction), 

while both the FEL and SEL had smaller gene sets compared to other Saccharomycotina yeasts 
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(p < 0.001 and p = 0.008, respectively; Dunn’s test for multiple comparisons with Benjamini-

Hochberg multi-test correction). The lower numbers of genes in the FEL (especially) and SEL 

lineages were also supported by gene content completeness analyses using orthologous sets of 

genes constructed from sets of genomes representing multiple taxonomic levels across 

eukaryotes (S5 Fig from Steenwyk et al., 2019a) from the ORTHODB database (Waterhouse et al., 

2013).  

 

To further examine which genes have been lost in the genomes of FEL and SEL species relative 

to other representative Saccharomycotina genomes, we conducted HMM-based sequence 

similarity searches using annotated S. cerevisiae genes as queries in HMM construction (see 

Methods) (S6 Fig from Steenwyk et al., 2019a). Because we were most interested in broad 

patterns of gene losses in the FEL and SEL, we focused our analyses on genes lost in at least 

two-thirds of each lineage (i.e., ≥ 11 FEL taxa or ≥ 5 SEL taxa). Using this criterion, we found 

that 1,409 and 771 genes have been lost in the FEL and SEL, respectively (Fig 2A). Among the 

genes lost in each lineage, 748 genes were lost across both lineages, 661 genes were uniquely 

lost in the FEL, and 23 genes were uniquely lost in the SEL (S3 File from Steenwyk et al., 

2019a). 

 

 

To identify the likely functions of genes lost from each lineage, we conducted GO enrichment 

analyses. Examination of significantly over-represented GO terms for the sets of genes that have  

been lost in Hanseniaspora genomes revealed numerous categories related to metabolism (e.g., 

MALTOSE METABOLIC PROCESS, GO:0000023, p = 0.006; SUCROSE ALPHA-GLUCOSIDASE 

ACTIVITY, GO:0004575, p = 0.003) and genome-maintenance processes (e.g., MEIOTIC CELL 
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Fig 29. Gene presence and absence analyses reflect phenotype and reveal disrupted pathways. 

(A) Examination of gene presence and absence (see Methods) revealed numerous genes that 

were lost across Hanseniaspora. Specifically, 1,409 were lost in the FEL, and 771 genes were 

lost in the SEL. A Euler diagram represents the overlap of these gene sets. Both lineages have 

lost 748 genes, the FEL has lost an additional 661, and the SEL has lost an additional 23. (B) 

The IMA gene family (IMA1–5) encoding α-glucosidases, MAL (MALx1–3) loci, and SUC2 are 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000255#sec020
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associated with growth on maltose, sucrose, raffinose, and melezitose. The IMA and MAL loci 

are largely absent among Hanseniaspora with the exception of homologs MALx1, which encode 

diverse transporters of the major facilitator superfamily whose functions are difficult to predict 

from sequence; as expected, Hanseniaspora spp. cannot grow on maltose, raffinose, and 

melezitose, with the sole exception of H. jakobsenii, which has delayed/weak growth on maltose 

and is the only Hanseniaspora species with MALx3, which encodes a homolog of the MAL-

activator protein. (C) The genes involved with galactose degradation are largely absent 

among Hanseniaspora species, which correlates with their inability to grow on galactose. Genes 

that are present are depicted in white, and genes that are absent are depicted in black. The ability 

to grow, the ability to weakly grow/exhibit delayed growth on a given substrate, or the inability 

to grow is specified using white, gray, and black circles, respectively; dashes indicate no data. 

(D) Most genes involved in the thiamine biosynthesis pathway are absent among 

all Hanseniaspora. (E) Many genes involved in the methionine salvage pathway are absent 

among all Hanseniaspora. Absent genes are depicted in purple. 

figshare: https://doi.org/10.6084/m9.figshare.7670756.v2. ADI, Acireductone 

Dioxygenase; ARO, AROmatic amino-acid requiring; AWRI, Australian Wine Research 

Institute; BAT, Branched-chain Amino-acid Transaminase; CBS, Centraalbureau voor 

Schimmelcultures; DSM2768, Dutch State Mines 2768; FEL, faster-evolving lineage; GAL, 

GALactose metabolism; IMA, IsoMAltase; MAL, MALtose fermentation; MDE, 

Methylthioribulose-1-phosphate DEhydratase; MEU, Multicopy Enhancer of Upstream 

activation site; MRI, MethylthioRibose-1-phosphate Isomerase; NRRL, Northern Regional 

Research Laboratory; SAM, S-AdenosylMethionine requiring; SEL, slower-evolving 

lineage; SUC2, SUCrose; THI, THIamine regulon; UTAD222, University of Trás-os-Montes and 

Alto Douro 222; UTR, Unidentified Transcript. 

 

CYCLE, GO:0051321, p < 0.001) (S4 File from Steenwyk et al., 2019a). Additional terms, such as 

CELL CYCLE, GO:0007049 (p < 0.001), CHROMOSOME SEGREGATION, GO:0007059 (p < 0.001), 

CHROMOSOME ORGANIZATION, GO:0051276 (p = 0.009), and DNA-DIRECTED DNA POLYMERASE 

ACTIVITY, GO:0003887 (p < 0.001), were significantly over-represented among genes absent 

only in the FEL. Next, we examined in more detail the identities and likely functional 

consequences of extensive gene losses across Hanseniaspora associated with metabolism, cell 

cycle, and DNA repair.  

 

https://doi.org/10.6084/m9.figshare.7670756.v2
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Metabolism-associated gene losses. 

Examination of the genes causing over-representation of metabolism-associated GO terms 

revealed gene losses in the IMA gene family and the MAL loci, both of which are associated with 

growth primarily on maltose but can also facilitate growth on sucrose, raffinose, and melezitose 

(Kurtzman and Fell, 1998; Opulente et al., 2018). All IMA genes have been lost in 

Hanseniaspora, whereas MALx3, which encodes the MAL-activator protein (Charron et al., 

1989) has been lost in all but one species (Hanseniaspora jakobsenii; Fig 29B). Consistent with 

these losses, Hanseniaspora species cannot grow on the carbon substrates associated with these 

genes (i.e., maltose, raffinose, and melezitose) with the exception of H. jakobsenii, which has 

weak/delayed growth on maltose (Fig 29B and S5 File from Steenwyk et al., 2019a). The growth 

of H. jakobsenii on maltose may be due to a cryptic α-glucosidase gene or represent a false 

positive, as MALx2 encodes the required enzyme for growth on maltose and is absent in H. 

jakobsenii. Because these genes are also associated with growth on sucrose in some species 

(Opulente et al., 2018), we also examined their ability to grow on this substrate. In addition to 

the MAL loci conferring growth on sucrose, the invertase Suc2 can also break down sucrose into 

glucose and fructose (Koschwanez et al., 2011). We found that FEL yeasts have lost SUC2 and 

are unable to grow on sucrose, while SEL yeasts have SUC2 and are able to grow on this 

substrate (Fig 29B and S5 File from Steenwyk et al., 2019a). Altogether, patterns of gene loss are 

consistent with known metabolic traits. 

 

Examination of gene sets associated with growth on other carbon substrates revealed that 

Hanseniaspora species also cannot grow on galactose, consistent with the loss of one or more of 

the three genes involved in galactose assimilation (GAL1, GAL7, and GAL10) from their 
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genomes (Fig 29C and S5 File from Steenwyk et al., 2019a). Additionally, all Hanseniaspora 

genomes appear to have lost two key genes, PCK1 and FBP1, encoding enzymes in the 

gluconeogenesis pathway (S7A Fig from Steenwyk et al., 2019a); in contrast, all Hanseniaspora 

have an intact glycolysis pathway (S7B Fig from Steenwyk et al., 2019a).  

 

Altogether these metabolism-associated gene losses may reflect Hanseniaspora ecology. More 

specifically, among wine strains of S. cerevisiae, genes associated with maltose and thiamine 

metabolism are frequently absent in their genomes (Gallone et al., 2016; Steenwyk and Rokas, 

2017) and are thought to reflect their ecology in the grape must environment (Steenwyk and 

Rokas, 2018). Interestingly, similar gene losses are observed among Hanseniaspora species but 

are often more pronounced; for example, Hanseniaspora species lack most of the thiamine 

biosynthesis pathway while wine strains of S. cerevisiae typically lack a single member of the 

THI gene family. 

 

Manual examination of other metabolic pathways revealed that Hanseniaspora genomes are also 

lacking some of their key genes. For example, we found that THIAMINE BIOSYNTHETIC PROCESS, 

GO:0009228 (p = 0.003), was an over-represented GO term among genes absent in both the FEL 

and SEL due to the absence of THI and SNO family genes. Further examination of genes present 

in the thiamine biosynthesis pathway revealed extensive gene loss (Fig 29D), which is consistent 

with their inability to grow on vitamin-free media (Kurtzman and Fell, 1998) (S5 File from 

Steenwyk et al., 2019a). Notably, Hanseniaspora are still predicted to be able to import 

extracellular thiamine via Thi73 and convert it to its active cofactor via Thi80, which may 

explain why they can rapidly consume thiamine (Martin et al., 2018). Similarly, examination of 
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amino acid biosynthesis pathways revealed the methionine salvage pathway was also largely 

disrupted by gene losses across all Hanseniaspora (Fig 29E). Lastly, we found that GDH1 and 

GDH3 from the glutamate biosynthesis pathway from ammonium are absent in FEL yeasts (S3 

File from Steenwyk et al., 2019a). However, Hanseniaspora have GLT1, which enables 

glutamate biosynthesis from glutamine. 

 

Cell cycle and genome integrity-associated gene losses. 

Many genes involved in cell cycle and genome integrity, including cell cycle checkpoint genes, 

have been lost across Hanseniaspora (Fig 30). For example, WHI5 and DSE2, which are 

responsible for repressing the Start (i.e., an event that determines cells have reached a critical 

size before beginning division) (Jorgensen, 2002) and help facilitate daughter-mother cell 

separation through cell wall degradation (Colman-Lerner et al., 2001), have been lost in both 

lineages. Additionally, the FEL has lost the entirety of the DASH complex (i.e., ASK1, DAD1, 

DAD2, DAD3, DAD4, DUO1, DAM1, HSK3, SPC19, and SPC34), which forms part of the 

kinetochore and functions in spindle attachment and stability, as well as chromosome 

segregation, and the MIND complex (i.e., MTW1, NNF1, NSL1, and DSN1), which is required 

for kinetochore bi-orientation and accurate chromosome segregation (S3 and S4 Files from 

Steenwyk et al., 2019a). Similarly, FEL species have lost MAD1 and MAD2, which are 

associated with spindle checkpoint processes and have abolished checkpoint activity when their 

encoded proteins are unable to dimerize (Heinrich et al., 2014). Lastly, components of the 

anaphase-promoting complex, a major multi-subunit regulator of the cell cycle, are lost in both 

lineages (i.e., CDC26 and MND2) or just the FEL (i.e., APC2, APC4, APC5, and SWM1).  
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Fig 30. Gene presence and absence in the budding yeast cell cycle. 

Examination of cell-cycle genes revealed numerous genes that are absent 

in Hanseniaspora genomes. The genes not present in Hanseniaspora participate in diverse 

functions and include key regulators such as WHI5, components of spindle checkpoint processes 

and segregation such as MAD1 and MAD2, and components of DNA-damage–checkpoint 

processes such as MEC3, RAD9, and RFX1. Genes absent in both lineages, the FEL, or the SEL 

are colored purple, orange, or blue, respectively. The “e” in the PHO cascade represents 

expression of Pho4:Pho2. Dotted lines with arrows indicate indirect links or unknown reactions. 

Lines with arrows indicate molecular interactions or relations. Circles indicate chemical 

compounds such as DNA. figshare: https://doi.org/10.6084/m9.figshare.7670756.v2. Ama, 

Activator of meiotic anaphase-promoting complex; APC (or APC/C), Anaphase-Promoting 

Complex; Bfa, Byr-four-alike; Bm1, Biomimetic moiety glutathionesulfonic acid; Bub, Budding 

uninhibited by benzimidazole; Cak1, Cyclin-dependent kinase-activating kinase; cAMP, cyclic 

AdenosineMonoPhosphate; Cdc, Cell division cycle; Cdh, CDC20 homolog; Cdr, Candida drug 

resistance; Chk, Checkpoint kinase; Cks, Cdc28 kinase subunit; Clb, Cyclin B; Cln, Cyclin; Cyc, 

Cytochrome C; Dam, Duo1 and Mps1 interacting; Dbf, Dumbbell former; Ddc, DNA Damage 

Checkpoint; Doc, Destruction of Cyclin B; Dun, DNA-damage UNinducible; Esp1, Extra spindle 

pole bodies 1; Far1, Factor ARrest; FEL, faster-evolving lineage; Fob, Fork Blocking less; Fus3, 

cell fusion 3; Gin4, Growth inhibitory 4; Grr, Glucose repression-resistant; Hsl, Histone 

synthetic lethal; Irr, Irregular cell behavior; Kcc, K+-Cl− cotransporters; Lte, Low temperature 

essential; MAD, Mitotic Arrest-Deficient; MAPK, Mitogen-Activated Protein Kinase; Mbp, 

Mlul-box–binding protein; Mcd, Mitotic chromosome determinant; MCM, Mini-Chromosome 

Maintenance; MEC3, Mitosis Entry Checkpoint 3; Met30, Methionine requiring 30; Mih1, 

https://doi.org/10.6084/m9.figshare.7670756.v2
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Mitotic inducer homolog; Mnd, Meiotic nuclear divisions; Mob, Mps one binder; Mps, 

Monopolar spindle; Mrc, Mediator of the Replication Checkpoint; Net, Nucleolar silencing 

establishing factor and telophase regulator; ORC, Origin Recognition Complex; Pds, Precocious 

Dissociation of Sisters; PHO, PHOsphate; Pom, Polarity misplaced; PP2A, Protein Phosphatase 

2A; RAD9, RADiation sensitive; RFX1,; SCB, Swi4,6-dependent cell ycle box; Scc, Sister 

Chromatid Cohesion; SCF, S-phase kinase-associated protein, Cullin, F-box containing complex; 

SEL, slower-evolving lineage; Sic, Sucrose NonFermenting; Slk, Synthetic lethal karyogamy; 

Smc, Stability of minichromosomes; Spo, Sporulation; Swe, Saccharomyces Wee1; Swi, 

Switching deficient; Swm, Spore Wall Maturation; Tah11, Topo-A Hypersensitive; Tem, 

Termination of M phase; Tup, deoxythymidine monophosphate-uptake; WHI5, WHIskey 5; Ycg, 

Yeast cap G; Ycs, Yeast condensing subunit; Yhp1, Yeast Homeo-Protein 1; Yox1, Yeast 

homeobox 1.  

 

Another group of genes that have been lost in Hanseniaspora are genes associated with the DNA 

damage checkpoint and DNA damage sensing. For example, both lineages have lost RFX1, 

which controls a late point in the DNA damage checkpoint pathway (Lubelsky et al., 2005), 

whereas the FEL has lost MEC3 and RAD9, which encode checkpoint proteins required for arrest 

in the G2 phase after DNA damage has occurred (Weinert et al., 1994). Since losses in DNA 

damage checkpoints and dysregulation of spindle checkpoint processes are associated with 

genomic instability, we next evaluated the ploidy of Hanseniaspora genomes (Galgoczy and 

Toczyski, 2001). Using base frequency plots, we found that the ploidy of genomes of FEL 

species ranges between 1 and 3, with evidence suggesting that certain species, such as H. 

singularis, H. pseudoguilliermondii, and H. jakobsenii, are potentially aneuploid (S8 Fig). In 

contrast, the genomes of SEL species have ploidies of 1-2 with evidence of potential aneuploidy 

observed only in H. occidentalis var. citrica. Greater variance in ploidy and aneuploidy in the 

FEL compared to the SEL may be due to the FEL’s loss of a greater number of components of 

the anaphase-promoting complex (APC), whose dysregulation is thought to increase instances of 

aneuploidy (Kim et al., 2017).  
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Lastly, we examined losses among genes related to meiosis. Although little is known about 

meiosis and sexual reproduction in Hanseniaspora, recent attempts to induce sporulation and 

sexual reproduction in different Hanseniaspora species have been unsuccessful (Chang et al., 

2012; Diawara et al., 2015; Albertin et al., 2016; Langenberg et al., 2017). In contrast, other 

species (i.e., Hanseniaspora thailandica, Hanseniaspora singularis, and Hanseniaspora 

gamundiae) are able to sporulate (Jindamorakot et al., 2009; Čadež et al., 2019). These 

inconsistences may be due to the infrequency of sporulation or reduced total number of spores 

produced which, may be linked to the losses of genes associated with coordinating meiosis such 

as the major regulator IME1 (Kassir et al., 1988) and genes associated with spore formation such 

as SSP1 (Nag et al., 1997) and GIP1 (Tachikawa et al., 2001) (S9 Fig from Steenwyk et al., 

2019a).  

 

Pronounced losses of DNA repair genes in the FEL. 

Examination of other GO-enriched terms revealed numerous genes associated with diverse DNA 

repair processes that have been lost among Hanseniaspora species, and especially the FEL (Fig 

31). We noted 14 lost DNA repair genes across all Hanseniaspora, including the DNA 

glycosylase gene MAG1 (Xiao and Chow, 1998), the photolyase gene PHR1 that exclusively 

repairs pyrimidine dimers (Sebastian et al., 1990), and the diphosphatase gene PCD1, a key 

contributor to the purging of mutagenic nucleotides, such as 8-oxo-dGTP, from the cell 

(Nunoshiba, 2004). An additional 33 genes were lost specifically in the FEL such as TDP1, 

which repairs damage caused by topoisomerase activity (Nitiss et al., 2006); the DNA 

polymerase gene POL32 that participates in base-excision and nucleotide-excision repair and 
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whose null mutants have increased genomic deletions (Huang et al., 2000); and the CDC13 gene 

that encodes a telomere-capping protein (Lustig, 2001). 
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Fig 31. A panoply of genome-maintenance and DNA repair genes are absent 

among Hanseniaspora, especially in the FEL. 

Genes annotated as DNA repair genes according to GO (GO:0006281) and child terms were 

examined for presence and absence in at least two-thirds of each lineage, respectively (268 total 

genes). 47 genes are absent among the FEL species, and 14 genes are absent among the SEL. 

Presence and absence of genes was clustered using hierarchical clustering (cladogram on the left) 

where each gene’s ontology is provided as well. Genes with multiple gene annotations are 

denoted as such using the “multiple” term. 

figshare: https://doi.org/10.6084/m9.figshare.7670756.v2. ABF1, Autonomously replicating 

sequence-Binding Factor 1; AWRI, Australian Wine Research Institute; CBS, Centraalbureau 

voor Schimmelcultures; CDC13, Cell Division Cycle 13; CSM2, Chromosome Segregation in 

Meiosis 2; DEF1, RNA polymerase II Degradation Factor 1; DSM2768, Dutch State Mines 

2768; EAF6, Essential something about silencing 2-related acetyltransferase 1-Associated Factor 

6; ECO1, Establishment of Cohesion 1; FEL, faster-evolving lineage; FYV6, Function required 

for Yeast Viability 6; GO, gene ontology; HPR1, HyPerRecombination 1; KRE29, Killer toxin 

Resistant 29; LIF1, Ligase Interacting Factor 1; LRS4, Loss of RDNA Silencing 4; MAG1, 3-

MethylAdenine DNA Glycosylase 1; MCM21, Mini-Chromosome Maintenance 21; MGT1, O-6-

MethylGuanine-DNA methylTransferase 1; MMS22, Methyl MethaneSulfonate sensitivity 

22; MRC1, Mediator of the Replication Checkpoint 1; NEJ1, Nonhomologous End-Joining 

defective 1; NRRL, Northern Regional Research Laboratory; NSE1, NonStructural maintenance 

of chromosomes Element 1; NUP120, NUclear Pore 120; PCD1, Peroxisomal Coenzyme A 

Diphosphatase 1; PDS1, Precocious Dissociation of Sisters 1; PHR1, PHotoreactivation Repair 

deficient 1; POL32, POLymerase 32; PSY3, Platinum SensitivitY 3; P/A, presence or 

absence; RAD9, RADiation sensitive 9; RFA3, Replication Factor A 3; RIF1, Repressor/activator 

site binding protein-Interacting Factor 1; SAE3, Sporulation in the Absence of sporulation 

Eleven; SEL, slower-evolving lineage; SEN15, Splicing ENdonuclease 15; SIR4, Silent 

Information Regulator 4; SLD2, Synthetically Lethal with DNA polymerase B (II)-1 2; SLX4, 

Synthetical Lethal of unknown (X) function 4; SNF6, Sucrose NonFermenting 6; TAH11, Topo-

A Hypersensitive 11; TDP1, Tyrosyl-DNA Phosphodiesterase 1;UTAD222, University of Trás-

os-Montes and Alto Douro 222; XRS2, X-Ray Sensitive 2. 

 

FEL gene losses are associated with accelerated sequence evolution 

Loss of DNA repair genes is associated with a burst of sequence evolution.  

To examine the mutational signatures of losing numerous DNA repair genes on Hanseniaspora 

substitution rates, we tested several different hypotheses that postulated changes in the ratio of 

the rate of nonsynonymous (dN) to the rate of synonymous substitutions (dS) (dN/dS or ω) along 

the phylogeny (Table 1 from Steenwyk et al., 2019a and Fig 28). For each hypothesis tested, the 

null was that the ω value remained constant across all branches of the phylogeny. Examination of 

https://doi.org/10.6084/m9.figshare.7670756.v2
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the hypothesis that the ω values of both the FEL and SEL stem branches were distinct from the 

background ω value (HFEL-SEL branch; Fig 28B), revealed that 678 genes (68.55% of examined 

genes) significantly rejected the null hypothesis (Table 1 from Steenwyk et al., 2019a; α = 0.01; 

LRT; median FEL stem branch ω = 0.57, median SEL stem branch ω = 0.29, and median 

background ω = 0.060). Examination of the hypothesis that the ω value of the FEL stem branch 

and the ω value of the FEL crown branches were distinct from the background ω value (HFEL; 

Fig 28C) revealed 743 individual genes (75.13% of examined genes) that significantly rejected 

the null hypothesis (Table 1 from Steenwyk et al., 2019a; α = 0.01; LRT; median FEL stem 

branch ω = 0.71, median FEL crown branches ω = 0.06, median background ω = 0.063). Testing 

the same hypothesis for the SEL (HSEL; Fig 28D) revealed 528 individual genes (53.7% of 

examined genes) that significantly rejected the null hypothesis (Table 1 from Steenwyk et al., 

2019a; α = 0.01; LRT; median SEL stem branch ω = 0.267, median SEL crown branches ω = 

0.074, median background ω = 0.059). Finally, testing of the hypothesis that the FEL and SEL 

crown branches have ω values distinct from each other and the background (HFEL-SEL crown; Fig 

28E) revealed 717 genes (72.5% of examined genes) that significantly rejected the null 

hypothesis (Table 1 from Steenwyk et al., 2019a; α = 0.01; LRT; median FEL crown branches ω 

= 0.062, median SEL crown branches ω = 0.074, median background ω = 0.010). These results 

suggest a dramatic, genome-wide increase in evolutionary rate in the FEL stem branch (Fig 28B 

and 28C), which coincided with the loss of a large number of genes involved in DNA repair. 

 

The FEL has a greater number of base substitutions and indels. 

To better understand the mutational landscape in the FEL and SEL, we characterized patterns of 

base substitutions across the 1,034 OGs. Focusing on first (n = 240,565), second (n = 318,987), 
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and third (n = 58,151) codon positions that had the same character state in all outgroup taxa, we 

first examined how many of these sites had experienced base substitutions in FEL and SEL 

species (Fig 32A). We found significant differences between the proportions of base 

substitutions in the FEL and SEL (F(1) = 196.88, p < 0.001; Multi-factor ANOVA) at each 

codon position (first: p < 0.001; second: p < 0.001; and third: p = 0.02; Tukey Honest 

Significance Differences post-hoc test).  
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Fig 32. Analyses of base substitutions and indels reveal a higher mutational load in the FEL 

compared to the SEL. 

(A) Analyses of substitution patterns among codon-based alignments of 1,034 OGs revealed a 

higher number of base substitutions in the FEL compared to the SEL (F(1) = 196.88, p < 0.001; 

multifactor ANOVA) and an asymmetric distribution of base substitutions at codon sites (F(2) = 

1,691.60, p < 0.001; multifactor ANOVA). A Tukey honest significance differences post hoc test 

revealed a higher proportion of substitutions in the FEL compared to the SEL at the first (n = 

240,565; p < 0.001), second (n = 318,987; p < 0.001), and third (n = 58,151; p = 0.02) codon 

positions. (B) Analyses of the direction of base substitutions (i.e., G|C → A|T or A|T → G|C) 

revealed significant differences between the FEL and SEL (F(1) = 447.1, p < 0.001; multifactor 

ANOVA) as well as differences in the directionality of base substitutions (F(1) = 914.5, p < 

0.001; multifactor ANOVA). A Tukey honest significance differences post hoc test revealed a 

significantly higher proportion of substitutions were G|C → A|T compared to A|T → G|C among 

sites that are G|C (n = 232,546) and A|T (n = 385,157) (p < 0.001), suggesting a general AT bias 

of base substitutions. Additionally, there was a significantly higher proportion of sites with base 

substitutions in the FEL compared to the SEL (p < 0.001). Specifically, a higher number of base 

substitutions was observed in the FEL compared to the SEL for both G|C → A|T (p < 0.001) and 

A|T → G|C mutations (p < 0.001), but the bias toward AT was greater in the FEL. (C) 

Examinations of transition/transversion ratios revealed a lower transition/transversion ratio in the 

FEL compared to the SEL (p < 0.001; Wilcoxon rank–sum test). (D) Comparisons of insertions 

and deletions revealed a significantly greater number of insertions (p < 0.001; Wilcoxon rank–

sum test) and deletions (p < 0.001; Wilcoxon rank–sum test) in the FEL 

( ; ) compared to 

the SEL ( ; ). (E 

and F) When adding the factor of size per insertion or deletion, significant differences were still 

observed between the lineages (F(1) = 2,102.87, p < 0.001; multifactor ANOVA). A Tukey 

honest significance differences post hoc test revealed that most differences were caused by 

significantly more small insertions and deletions in the FEL compared to the SEL. More 

specifically, there were significantly more insertions in the FEL compared to the SEL for sizes 

3–18 (p < 0.001 for all comparisons between each lineage for each insertion size), and there were 

significantly more deletions in the FEL compared to the SEL for sizes 3–21 (p < 0.001 for all 

comparisons between each lineage for each deletion size). Black lines at the top of each bar show 

the 95% confidence interval for the number of insertions or deletions for a given size. (G) 

Evolutionarily conserved homopolymers of sequence length 2 (n = 17,391), 3 (n = 1,062), 4 (n = 

104), and 5 (n = 5) were examined for substitutions and indels. Statistically significant 

differences of the proportion mutated bases (i.e., [base substitutions + deleted bases + inserted 

bases]/total homopolymer bases) were observed between the FEL and SEL (F(1) = 27.68, p < 

0.001; multifactor ANOVA). Although the FEL had more mutations than the SEL for all 

homopolymers, a Tukey honest significance differences post hoc test revealed differences were 

statistically significant for homopolymers of two (p = 0.02) and three (p = 0.003). Analyses of 

homopolymers using additional factors of mutation type (i.e., base substitution, insertion, 

deletion) and homopolymer sequence type (i.e., A|T and C|G homopolymers) can be seen in S10 

Fig. (H) G → T or C → A mutations are associated with the common and abundant oxidatively 

damaged base, 8-oxo-dG. When examining all substituted G positions for each species and their 

substitution direction, we found significant differences between different substitution directions 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000255#pbio.3000255.s010
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000255#pbio.3000255.s010
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(F(2) = 5,682, p < 0.001; multifactor ANOVA). More importantly, a Tukey honest significance 

differences post hoc test revealed an over-representation of G → T or C → A in the FEL 

compared to the SEL (p < 0.001). (I) Signatures of UV-damage–associated single and double 

substitutions (i.e., C → T at CC sites and CC → TT) double substitutions are greater in the FEL 

compared to the SEL (p < 0.001 for both tests; Wilcoxon rank–sum test). 

figshare: https://doi.org/10.6084/m9.figshare.7670756.v2. FEL, faster-evolving lineage; OG, 

orthologous gene; Pro., Proportion; SEL, slower-evolving lineage. 

 

We next investigated differences in the direction of substitutions. Specifically, we examined if 

substitutions were biased in the AT- direction (i.e., G|C → A|T) or GC- direction (i.e., A|T → 

G|C) as well as if there are differences among substitutions in these directions between FEL and 

SEL. We observed significant differences among substitutions in the AT- and GC-directions 

between the FEL and SEL (F(1) = 447.1, p < 0.001; Multi-factor ANOVA), as well as between 

overall AT- and GC-bias across both lineages among G|C (n = 232,546) and A|T (n = 385,157) 

sites (F(1) = 914.5, p < 0.001; Multi-factor ANOVA) (Fig 32B). There were significantly more 

base substitutions in the FEL compared to the SEL and a significant bias toward A|T across both 

lineages (p < 0.001 for both tests; Tukey Honest Significance Differences post-hoc test).  

 

We next examined patterns of transition / transversion ratios and observed a lower transition / 

transversion ratio in the FEL (0.67 ± 0.02) compared to the SEL (0.76 ± 0.01) (Fig 32C; p < 

0.001; Wilcoxon Rank Sum test); this finding is in contrast to the transition / transversion ratios 

found in most known organisms, whose values are substantially above 1.00 [56–59]. Altogether, 

these analyses reveal more base substitutions in the FEL and SEL across all codon positions, a 

significant AT-bias in base substitutions across all Hanseniaspora, and a low transition / 

transversion ratio across FEL and SEL. 

 

https://doi.org/10.6084/m9.figshare.7670756.v2
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Examination of indels revealed that the total number of insertions or deletions was significantly 

greater in the FEL (meaninsertions = 7521.11 ± 405.34; meandeletions = 3894.11 ± 208.16) compared 

to the SEL (meaninsertions = 6049.571 ± 155.85; meandeletions = 2346.71 ± 326.22) (Fig 32D; p < 

0.001 for both tests; Wilcoxon Rank Sum test). The difference in number of indels between the 

FEL and SEL remained significant after taking into account indel size (F(1) = 2102.87, p < 

0.001; Multi-factor ANOVA). Further analyses revealed there are significantly more insertions 

in the FEL compared to the SEL for insertion sizes 3-18 bp (p < 0.001 for all comparisons 

between each lineage for each insertion size; Tukey Honest Significance Differences post-hoc 

test), while there were significantly more deletions in the FEL compared to the SEL for deletion 

sizes 3-21 bp (p < 0.001 for all comparisons between each lineage for each deletion size; Tukey 

Honest Significance Differences post-hoc test). These analyses suggest that there are 

significantly more indels in the FEL compared to the SEL and that this pattern is primarily 

driven by short indels. 

 

Greater sequence instability in the FEL and signatures of endogenous and exogenous DNA 

damage 

The FEL has greater instability of homopolymers. 

Examination of the total proportion of mutated bases among homopolymers (i.e., stretches of the 

same base) in codon-based alignments of the 1,034 orthologous genes (i.e., (substituted bases + 

deleted bases + inserted bases) / total homopolymer bases) revealed significant differences 

between the FEL and SEL (Fig 32G; F(1) = 27.68, p < 0.001; Multi-factor ANOVA). Although 

the FEL had a higher proportion of mutations among homopolymers across all sizes of two (n = 

17,391), three (n = 1,062), four (n = 104), and five (n = 5), significant differences were observed 
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for homopolymers of length two and three (p = 0.02 and p = 0.003, respectively; Tukey Honest 

Significance Differences post-hoc). To gain more insight into the stability of different 

homopolymer runs (i.e., A|T or C|G) and the types of sequence changes that occur among 

homopolymers, we considered the additional factors of homopolymer sequence type (i.e., A|T or 

C|G) and mutation type (i.e., base substitution, insertion, or deletion) (S10 Fig from Steenwyk et 

al., 2019a). In addition to recapitulating differences between the types of mutations that occur at 

homopolymers (F(2) = 1686.70, p < 0.001; Multi-factor ANOVA), we observed that base 

substitutions occurred more frequently than insertions and deletions (p < 0.001 for both tests; 

Tukey Honest Significance Differences post-hoc test). For example, among A|T and C|G 

homopolymers of length two and C|G homopolymers of length three, base substitutions were 

higher in the FEL compared to the SEL (p = 0.009, p < 0.001, and p < 0.001, respectively; Tukey 

Honest Significance Differences post-hoc test). Additionally, there were significantly more base 

substitutions in A|T homopolymers of length five in the FEL compared to the SEL (p < 0.001; 

Tukey Honest Significance Differences post-hoc test). Altogether, these analyses reveal greater 

instability of homopolymers in the FEL compared to the SEL due to more base substitutions. 

 

The FEL has a stronger signature of endogenous DNA damage from 8-oxo-dG. 

Examination of mutational signatures associated with common endogenous and exogenous 

mutagens revealed greater signatures of mutational load in the FEL compared to the SEL, as well 

as in both FEL and SEL compared to the outgroup taxa. The oxidatively damaged guanine base, 

8-oxo-dG, is a commonly observed endogenous form of DNA damage that causes the 

transversion mutation of G → T or C → A (De Bont, 2004). Examination of the direction of base 

substitutions among all sites with a G base in all outgroup taxa revealed differences in the 
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direction of base substitutions (F(2) = 5,682, p < 0.001; Multi-factor ANOVA). Moreover, there 

are significantly more base substitutions at G sites associated with 8-oxo-dG damage in the FEL 

compared to the SEL (Fig 32H; p < 0.001; Tukey Honest Significance Differences post-hoc test). 

These analyses reveal that FEL genomes have higher proportions of G site substitutions 

associated with the mutational signature of a common endogenous mutagen. 

 

Hanseniaspora have a greater genomic signature of UV-damage. 

UV damage can result in C → T substitutions at CC sites and CC → TT double substitutions 

(Huang et al., 2000; Budden and Bowden, 2013). Although both the FEL and SEL have lost 

PHR1, a gene encoding a DNA photolyase that repairs pyrimidine dimers, FEL has lost 

additional genes in other pathways that can repair UV damage (e.g. POL32 in the excision repair 

pathways). We hypothesized the FEL would have a greater signature of UV damage due to these 

gene losses. We found significantly greater number of single and double substitutions in CC sites 

indicative of UV damage in the FEL compared to SEL (Fig 32I; p < 0.001 for both tests; 

Wilcoxon Rank Sum test). 

 

Lastly, we examined if all of these mutations were associated with more radical amino acid 

changes in the FEL compared to the SEL using two measures of amino acid change: Sneath’s 

index (Sneath, 1966) and Epstein’s coefficient of difference (Epstein, 1967). For both measures, 

we observed significantly more radical amino acid substitutions in the FEL compared to the SEL 

(S11 Fig from Steenwyk et al., 2019a; p < 0.001; Wilcoxon Rank Sum test for both metrics). 

Altogether, these analyses reveal greater DNA sequence instability in the FEL compared to the 

SEL, which is also associated with more radical amino acid substitutions. 
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Discussion 

Species in the genus Hanseniaspora exhibit the longest branches among budding yeasts and their 

genomes have some of the lowest numbers of genes, lowest GC contents, and smallest assembly 

sizes in the subphylum (Fig 27, S4 Fig from Steenwyk et al., 2019a) (Riley et al., 2016; Shen et 

al., 2016b, 2018). Through the analysis of the genomes of nearly every known Hanseniaspora 

species, this study presents multiple lines of evidence suggesting that one lineage of 

Hanseniaspora, which we have named FEL, is a lineage of long-term, hypermutator species that 

have undergone extensive gene loss (Figs 27-30 as well as S2, S5, S7 and S8 Figs from 

Steenwyk et al., 2019a).  

 

Evolution by gene loss is gaining increasing attention as a major mode of genome evolution 

(Albalat and Cañestro, 2016; Shen et al., 2018) and is mainly possible due to the dispensability 

of the majority of genes. For example, 90% of E. coli (Baba et al., 2006), 80% of S. cerevisiae 

(Giaever et al., 2002), and 73% of Candida albicans (Segal et al., 2018) genes are dispensable in 

laboratory conditions. The loss of dispensable genes can be selected for (Koskiniemi et al., 2012) 

and is common in lineages of obligate parasites or symbionts, such as in the microsporidia, 

intracellular fungi which have lost key metabolic pathways such as amino acid biosynthesis 

pathways (Katinka et al., 2001; Keeling and Slamovits, 2004), and myxozoa, a group of 

cnidarian obligate parasites that infect vertebrates and invertebrates (Chang et al., 2015). Similar 

losses are also increasingly appreciated in free-living organisms, such as the budding yeasts [this 

study; 34,35,76–78] and animals (Albalat and Cañestro, 2016). For example, the loss of SUC2, a 

gene known to enable sucrose utilization (Koschwanez et al., 2011), in the FEL reflects the 
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inability of species in the FEL to grow on sucrose, while its presence in the SEL reflects its 

species’ ability to grow on sucrose (Fig 28).  

 

However, Hanseniaspora species have experienced not just the typically observed losses of 

metabolic genes (Figs 28A and 28B), but more strikingly, the atypical loss of dozens of cell 

cycle and DNA damage, response, and repair genes (Figs 29 and 30). Losses of cell cycle genes 

are extremely rare (Medina et al., 2016), and most such losses are known in the context of 

cancers (Hartwell, 1992). Losses of individual or a few DNA repair genes have also been 

observed in individual hypermutator fungal isolates (Billmyre et al., 2017; Boyce et al., 2017; 

Rhodes et al., 2017a). In contrast, the Hanseniaspora losses of cell cycle and DNA repair genes 

are not only unprecedented in terms of the numbers of genes lost and their striking impact on 

genome sequence evolution, but also in terms of the evolutionary longevity of the lineage.  

 

Lost checkpoint processes are associated with fast growth and bipolar budding. 

Hanseniaspora species lost numerous components of the cell cycle (Fig 29), such as WHI5, 

which causes accelerated G1/S transitions in knock-out S. cerevisiae strains (Jorgensen, 2002; 

Costanzo et al., 2004), as well as components of APC (i.e., CDC26 and MND2), which may 

accelerate the transition to anaphase (Castro et al., 2005). These and other cell cycle gene losses 

are suggestive of rapid cell division and growth and consistent with the known ability of 

Hanseniaspora yeast of rapid growth in the wine fermentation environment (Langenberg et al., 

2017). 
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One of the distinguishing characteristics of the Hanseniaspora cell cycle is bipolar budding, 

which is known only in the genera Wickerhamia (Debaryomycetaceae) and Nadsonia 

(Dipodascaceae), as well as in Hanseniaspora and its sister genus Saccharomycodes (both in the 

family Saccharomycodaceae) (Kurtzman and Fell, 1998; Tavares et al., 2018). These three 

lineages are distantly related to one another on the budding yeast phylogeny (Shen et al., 2018), 

so bipolar budding likely evolved three times independently in Saccharomycotina, including in 

the last common ancestor of Hanseniaspora and Saccharomycodes. Currently, there is only one 

genome available for Saccharomycodes (Tavares et al., 2018), making robust inferences of 

ancestral states challenging. Interestingly, examination of cell cycle gene presence and absence 

in the only representative genome from the genus, Saccharomycodes ludwigii (Tavares et al., 

2018), reveals that CDC26, PCL1, PDS1, RFX1, SIC1, SPO12, and WHI5 are absent (S6 File 

from Steenwyk et al., 2019a), most of which are either absent from all Hanseniaspora (i.e., 

CDC26, RFX1, SPO12, and WHI5) or just from the FEL (i.e., PDS1 and SIC1). This evidence 

raises the hypothesis that bipolar budding is linked to the dysregulation of cell cycle processes 

due to the absence of cell cycle genes and in particular cell cycle checkpoints (Fig 29).  

 

Some gene losses may be compensatory. 

Deletion of many of the genes associated with DNA maintenance that have been lost in 

Hanseniaspora lead to dramatic increases of mutation rates and gross genome instability (Huang 

et al., 2000; Costanzo et al., 2004; Castro et al., 2005), raising the question of how these gene 

losses were tolerated in the first place. Examination of the functions of the genes lost in 

Hanseniaspora suggests that at least some of these gene losses may have been compensatory. 

For example, POL4 knock-out strains of S. cerevisiae can be rescued by the deletion of YKU70 
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(Sterling, 2005), both of which were lost in the FEL. Similarly, the loss of genes responsible for 

key cell cycle functions (e.g., kinetochore functionality and chromosome segregation) appears to 

have co-occurred with the loss of checkpoint genes responsible for delaying the cell cycle if its 

functions fail to complete, which may have allowed Hanseniaspora cells to bypass otherwise 

detrimental cell cycle arrest. Specifically, MAD1 and MAD2, which help delay anaphase when 

kinetochores are unattached (Heinrich et al., 2014); the 10-gene DASH complex, which 

participates in spindle attachment, stability, and chromosome segregation (Jenni and Harrison, 

2018); and the 4-gene MIND complex, which is required for kinetochore bi-orientation and 

accurate chromosome segregation (Dimitrova et al., 2016), were all lost in the FEL. 

 

Lastly, the telomere capping protein CDC13 was lost in FEL but is essential not only in S. 

cerevisiae but also in mammalian cells. However, additional losses in DNA damage response 

genes (i.e., SGS1, EXO1, and RAD9) can allow yeast cells to survive in the absence of CDC13 

(Ngo and Lydall, 2010). In addition to CDC13, FEL has also lost the checkpoint protein RAD9 

and other genes in the DNA damage checkpoint pathway, including MRC1 and MEC3. We 

hypothesize that the loss of CDC13 was compensated by losses in the DNA damage response 

pathway as has been observed in S. cerevisiae (Ngo and Lydall, 2010). 

 

Long-term hypermutation and the subsequent slowing of sequence evolution. 

Estimates of the substitution rate ratio ω suggest the FEL and SEL, albeit to a much lower degree 

in the latter, underwent a burst of accelerated sequence evolution in their stem lineages, followed 

by a reduction in the pace of sequence evolution (Fig 31). This pattern is consistent with 

theoretical predictions that selection against mutator phenotypes will reduce the overall rate of 
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sequence evolution (Ram and Hadany, 2012), as well as with evidence from experimental 

evolution of hypermutator lines of S. cerevisiae that showed that their mutation rates were 

quickly reduced (McDonald et al., 2012). Although we do not know the catalyst for this burst of 

sequence evolution, hypermutators may be favored in maladapted populations or in conditions 

where environmental parameters frequently change (McDonald et al., 2012; Ram and Hadany, 

2012). While the environment occupied by the Hanseniaspora last common ancestor is 

unknown, it is plausible that environmental instability or other stressors favored hypermutators 

in Hanseniaspora. Extant Hanseniaspora species are well known to be associated with the grape 

environment (Chavan et al., 2009; Seixas et al., 2017; Martin et al., 2018). Interestingly, grapes 

appear to have originated  (Wikstrom et al., 2001) around the same time window that 

Hanseniaspora did (Fig 27B), leading us to speculate that the evolutionary trigger of 

Hanseniaspora hypermutation could have been adaptation to the grape environment. 

 

Losses of DNA repair genes are reflected in patterns of sequence evolution. 

Although the relationship between genotype and phenotype is complex, the loss of genes 

involved in DNA repair can have predictable outcomes on patterns of sequence evolution in 

genomes. In the case of the observed losses of DNA repair genes in Hanseniaspora, the 

mutational signatures of this loss and the consequent hypermutation can be both general (i.e., the 

sum total of many gene losses), as well as specific (i.e., can be putatively linked to the losses of 

specific genes or pathways). Arguably the most notable general mutational signature is that 

Hanseniaspora genome sequence evolution is largely driven by random (i.e., neutral) mutagenic 

processes with a strong AT-bias. For example, whereas the transition / transversion ratios of 

eukaryotic genomes are typically within the 1.7 and 4 range (Vignal et al., 2002; Marth et al., 
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2011; Zhu et al., 2014a; Wang et al., 2015), Hanseniaspora ratios are ~0.66-0.75 (Fig 32C), 

which are values on par with estimates of transition / transversion caused by neutral mutations 

alone (e.g., 0.6-0.95 in S. cerevisiae (Lynch et al., 2008a; Zhu et al., 2014a), 0.92 in E. coli 

(Lynch, 2007), 0.98 in Drosophila melanogaster (Keightley et al., 2009a), and 1.70 in humans 

(Lynch, 2010)). Similarly, base substitutions across Hanseniaspora genomes are strongly AT-

biased, especially in the FEL (Fig 32), an observation consistent with the general AT-bias of 

mutations observed in diverse organisms, including numerous bacteria (Hershberg and Petrov, 

2010), Drosophila fruit flies (Keightley et al., 2009a), S. cerevisiae (Zhu et al., 2014a), and 

humans (Lynch, 2010).  

 

In addition to these general mutational signatures, examination of Hanseniaspora sequence 

evolution also reveals mutational signatures that can be linked to the loss of specific DNA repair 

genes. For example, we found a higher proportion of base substitutions associated with the most 

abundant oxidatively damaged base, 8-oxo-dG, which causes G → T or C → A transversions 

(De Bont, 2004), in the FEL compared to the SEL, which reflects specific gene losses. 

Specifically, Hanseniaspora yeasts have lost PCD1, which encodes a diphosphatase that 

contributes to the removal of 8-oxo-dGTP (Nunoshiba, 2004) and thereby reduces the chance of 

misincorporating this damaged base. Once 8-oxo-dG damage has occurred, it is primarily 

repaired by the base excision repair pathway (De Bont, 2004). Notably, the FEL has lost a key 

component of the base excision repair pathway, a DNA polymerase 𝛿 subunit, encoded by 

POL32, which aids in filling the gap after excision (Seeberg et al., 1995). Accordingly, the 

proportion of G|C sites with substitutions indicative of 8-oxo-dG damage (i.e., G → T or C → A 

transversions) is significantly greater in the FEL compared to the SEL (Fig 32H). Similarly, the 
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numbers of dinucleotide substitutions of CC → TT associated with UV-induced pyrimidine 

dimers (Huang et al., 2017) are higher across Hanseniaspora compared to other yeasts due to the 

loss of PHR1, which encodes a DNA photolyase that repairs pyrimidine dimers (Fig 32I) 

(Sebastian et al., 1990).  

 

Our analyses provide the first major effort to characterize the genome function and evolution of 

the enigmatic genus Hanseniaspora. Our analyses focus on genomic differences between two 

lineages and identify major and extensive losses of genes associated with metabolism, cell cycle, 

and DNA repair processes. These extensive losses and the concomitant acceleration of 

evolutionary rate mean that levels of amino acid sequence divergence within each of the two 

Hanseniaspora lineages alone, but especially within the FEL, are similar to those observed 

within plant classes and animal subphyla (S12 Fig from Steenwyk et al., 2019a). These 

discoveries set the stage for further examination of intra-lineage or intra-species variation in 

genomic features and content. More interestingly, our analyses lay the foundation for 

fundamental molecular and evolutionary investigations among Hanseniaspora, such as potential 

novel rewiring of cell cycle and DNA repair processes. 
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CHAPTER 8 

Examination of gene loss in the DNA mismatch repair pathway and its mutational 

consequences in a fungal phylum7 

 

Introduction 

An ensemble of DNA repair pathways and cell cycle checkpoints is responsible for detecting and 

repairing DNA damage, ensuring faithful maintenance of the genome (Friedberg et al., 2005; 

Giglia-Mari et al., 2010). Among DNA repair pathways, the DNA mismatch repair (MMR) 

pathway is one of the best characterized (Marti et al., 2002). The MMR pathway is responsible 

for repairing bases that were incorrectly paired during DNA replication via five steps: 

recognition, incision, removal, re-synthesis, and ligation (Fig. 33A) (Marti et al., 2002; Fukui, 

2010; Hsieh and Zhang, 2017). The MMR pathway is highly conserved in both bacteria and 

eukaryotes; cells that experience reduction or loss of function in this pathway have increased 

levels of mutation, as seen in cancer and drug-resistant fungal pathogen strains (Fukui, 2010; 

Billmyre et al., 2017, 2020; Campbell et al., 2017; Dos Reis et al., 2019). 

 

Although DNA repair genes are generally highly conserved, certain fungal lineages have been 

reported to have a more limited repertoire, particularly within the phylum Ascomycota. For 

example, budding yeasts (subphylum Saccharomycotina) and fission yeasts (Taphrinomycotina) 

have fewer DNA repair genes than filamentous fungi (Pezizomycotina) 

 

7This work is published in: Phillips, M. A., Steenwyk, J. L., Shen, X.-X., and Rokas, A. (2021). 

Examination of Gene Loss in the DNA Mismatch Repair Pathway and Its Mutational 

Consequences in a Fungal Phylum. Genome Biol. Evol. 13. doi:10.1093/gbe/evab219. 
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Fig. 33. The DNA Mismatch Repair (MMR) pathway corrects mismatched bases produced 

during DNA replication and prevents instability in microsatellites. 

(A) The pathway is comprised of five conserved steps: recognition of mispaired bases by a 

sliding clamp, incision of the DNA strand by an endonuclease, excision of the incorrectly paired 

bases, resynthesis of the DNA strand, and ligation of the newly synthesized segment to the DNA 

strand. Table S2 from Phillips et al., 2021 includes a full list of MMR genes and their 

categorization into one of the five steps. (B) The MMR pathway also recognizes base or repeat 

addition and skipping errors during replication and corrects them. However, dysfunction in this 

pathway can leave replication slippage unrepaired, leading to the and the addition or deletion of 

base pairs or repeats, especially in highly repetitive regions such as microsatellites. 

 

(Milo et al., 2019; Shen et al., 2020b). Furthermore, DNA repair genes that were lost from 

budding yeasts and fission yeasts are more likely to also be lost in filamentous fungi (Milo et al., 

2019). 
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One lineage that has experienced extensive losses in its repertoire of DNA repair genes is the 

Hanseniaspora genus of budding yeasts (Steenwyk et al. 2019). Hanseniaspora species have 

undergone punctuated sequence evolution and have accumulated large numbers of diverse types 

of substitutions, including those associated with specific gene losses such as UV damage, 

suggesting that DNA repair is impaired by the high levels of DNA repair gene loss. These 

findings suggest that DNA repair genes are not universally conserved across fungi and that their 

loss is compatible with long-term evolutionary survival and diversification of fungal lineages. 

 

One well-established consequence of MMR dysfunction is mutation in microsatellite regions of 

the genome. Microsatellites are repetitive tracts of DNA, with motifs 1-6 bp long repeated at 

least five times (Beier et al., 2017). Microsatellites are typically highly polymorphic between 

individuals and are commonly used as markers in population biology, forensics, paternity testing, 

and tumor characterization (Richman, 2015). Due to their repetitive nature, microsatellites are 

prone to experiencing polymerase slippage, which is usually corrected by the MMR pathway 

(Fig. 33B) (Ellegren, 2004; Richman, 2015). If the MMR pathway does not recognize these 

errors, as is the case in cancer, microsatellite instability (MSI) can occur (Campbell et al., 2017). 

MSI is defined by a hypermutable phenotype resulting from a loss of function in the MMR 

pathway (Boland and Goel, 2010). Instability in microsatellites trends towards elongation in 

these regions, but contraction can also occur (Ellegren, 2004).  

 

Beyond increased mutation in microsatellite regions, aberrant function of the MMR pathway is 

associated with genome-wide signatures of genetic instabilities (Boland and Goel, 2010; 

Billmyre et al., 2017, 2020). MMR mutations have been implicated in the development of 
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hypermutant and ultrahypermutant human cancers, which constitute approximately 15% of 

human tumors and less than 1% of tumors, respectively (Campbell et al., 2017). Interestingly, 

very few tumors with low mutation rates contained mutations in the MMR pathway, whereas 

more than a third of hypermutant tumors and virtually all the ultrahypermutants contained 

mutations in MMR genes (Campbell et al., 2017). Hypermutant tumors had high levels of MSI 

suggesting their hypermutant phenotype is due, at least in part, to MMR dysfunction (Campbell 

et al., 2017). Hypermutation has also been observed in fungal pathogen strains that have lost 

MMR pathway genes, potentially driving within-host adaptation and the evolution of drug 

resistance. For example, Rhodes et al. (2017) found that hypermutation caused by mutations in 

three MMR pathway genes, including MSH2, resulted in a rapid increase in the mutation rate of 

the human pathogenic fungus Cryptococcus neoformans, contributing to infection relapse. 

Similarly, Billmyre et al. (2017) sequenced multiple strains of the human pathogenic fungus 

Cryptococcus deuterogattii (phylum Basidiomycota) and found that a group of strains with 

mutations in the MSH2 gene experienced higher rates of mutation when compared with closely 

related strains harboring an intact MSH2 gene. Hypermutation in C. deuterogattii mediated rapid 

evolution of antifungal drug resistance (Billmyre et al., 2017, 2020). 

 

In contrast to MMR gene loss in the microevolutionary context of genetic or infectious disease, 

the extent of MMR gene loss across lineages spanning multiple species remains understudied. To 

determine the macroevolutionary impact of MMR gene conservation and loss, we characterized 

patterns of MMR gene presence and absence in the fungal phylum Ascomycota (Fig. 34). We 

found that the MMR pathway was highly conserved across Ascomycota, with the median species 

having 49 / 52 MMR genes present. However, we found that Blumeria graminis and species in 
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the powdery mildew genus Erysiphe (subphylum Pezizomycotina, class Leotiomycetes), a group 

of obligate plant parasites, had many fewer MMR genes and a faster rate of sequence evolution  

 

 

Fig. 34. Conservation of mismatch repair (MMR) pathway genes across the fungal phylum 

Ascomycota. 

MMR genes are generally highly conserved across the phylum. A few model organisms and 

species of particular interest to medicine and agriculture are labeled as well as a representative 

species of the faster-evolving Hanseniaspora lineage. Gene presences are indicated in the bands 

surrounding the phylogeny with genes colored according to their function; red is recognition, 

orange is incision, yellow is excision, green is resynthesis, and purple is ligation. Branches are 

colored by subphylum; budding yeasts / Saccharomycotina (n = 332 species) are in red, fission 

yeasts / Taphrinomycotina (n = 14 species) are in purple, and filamentous fungi / Pezizomycotina 

(n = 761 species) are in green. Taxon names have been omitted from the phylogeny for 

visualization purposes; the phylogenetic tree with taxon names can be found in Figure S1 from 

Phillips et al., 2021 and Shen et al. (2020). The inset phylogenetic tree shows the higher loss taxa 

(HLT; in blue) and lower loss taxa (LLT; in black), with the blue box beneath highlighting them. 
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than their relatives and most other fungal taxa. Specifically, Erysiphe necator has lost 9 MMR 

genes, Erysiphe pisi has lost 21 MMR genes, Erysiphe pulchra has lost 7 MMR genes, and 

Blumeria graminis has lost 5 MMR genes (Fig. 35). In contrast, species closely related to 

Erysiphe and Blumeria have lost only 1 – 2 MMR genes, consistent with the high degree of 

MMR gene conservation in the rest of the phylum. Evolutionary genomic analyses revealed that 

MMR gene losses in Erysiphe and Blumeria (hereafter referred to as higher loss taxa or HLT) are 

associated with a proliferation of mononucleotide runs and elongation of microsatellites of all 

motif lengths, both of which are hallmarks of MMR pathway dysfunction. Reflecting these 

losses, Erysiphe and Blumeria genomes also have more pronounced mutational biases and 

accelerated rates of mutation. These results suggest that obligate plant parasites in the genera 

Blumeria and Erysiphe have diversified while lacking otherwise highly conserved MMR genes. 

 

 

Fig. 35. The powdery mildews Erysiphe and Blumeria have lost many more mismatch repair 

(MMR) pathway genes than closely related species. 

Higher loss taxa (HLT; shown in blue font) have lost 5 – 21 MMR genes, while lower loss taxa 

(LLT; shown in black font) have lost 1 – 2 genes and the median ascomycete has lost 3 genes. 

Note that the losses of EXO1, MLH2, MLH3, MSH5, PMS1, PMS2, and RFC1 are uniquely 

observed in HLT.  Genes are colored according to their function; red is recognition, orange is 

incision, yellow is excision, green is resynthesis, and purple is ligation. 
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Materials and Methods 

Curation of the set of DNA mismatch repair pathway genes  

To investigate the presence and absence of MMR genes across the fungal phylum Ascomycota, 

we curated a dataset of MMR genes from the genomes of three fungal model organisms 

representing the three different subphyla: Saccharomyces cerevisiae (subphylum 

Saccharomycotina), Neurospora crassa (Pezizomycotina), and Schizosaccharomyces pombe 

(Taphrinomycotina). We used three sources to curate genes that are part of the MMR pathway: 

the Kyoto Encyclopedia of Genes and Genomes (KEGG, genome.jp/kegg/; Kanehisa & Goto, 

2000), the Schizosaccharomyces pombe database (PomBase, pombase.org/; Lock et al., 2019; 

The Gene Ontology Consortium, 2019), and the Saccharomyces Genome Database (SGD, 

yeastgenome.org/; Cherry et al., 2012). Aiming to be inclusive when selecting genes to be 

included as MMR, genes in the KEGG diagram of the MMR pathway for each species were 

included and the gene ontology (GO) term “mismatch repair” was used to search for the genes on 

SGD and Pombase (Ashburner et al., 2000). We used both computationally and manually curated 

genes from SGD. We began curating our set of MMR genes in S. cerevisiae, with a total of 30 

MMR genes identified with KEGG and SGD. Next, we searched KEGG and Pombase for genes 

in S. pombe that had not been annotated as part of the MMR pathway in S. cerevisiae (n = 15). 

We concluded by searching for N. crassa MMR genes in KEGG which had not already been 

categorized as MMR genes in the other two species (n =7). KEGG listed two sequences for the 

N. crassa gene LIG1; however, since our sequence similarity search analyses with both 

sequences yielded identical patterns of loss, we present them as one gene. This approach yielded 

a total of 52 genes associated with MMR (Table S2 from Phillips et al., 2021). 
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MMR gene conservation analysis 

To examine the conservation of MMR genes across Ascomycota, we implemented a sensitive 

probabilistic modeling approach using profile Hidden Markov Models (pHMMs) (Johnson et al., 

2010) of MMR genes across the genomes of 1,107 species (Shen et al., 2020b). To construct 

pHMMs, we first searched for putative homologs of MMR genes in the fungal RefSeq protein 

database using the blastp function of BLAST+, v2.8.1, with a bitscore threshold of 50 and an e-

value cutoff of 1 x 10-3 (Pearson, 2013). We retrieved the top 100 hits using SAMTOOLS, V1.6 (Li 

et al., 2009b) with the ‘faidx’ function. We used MAFFT, v7.402 (Katoh et al., 2002), with the 

‘genafpair’ and ‘reordered’ parameters, a maximum of 1000 cycles of iterative refinement, the 

BLOSUM62 matrix, a gap opening penalty of 1.0, and the retree parameter set to 1, to align the 

sequences following previously established protocol (Steenwyk et al., 2019b).We then used the 

aligned amino acid sequences as input to the ‘hmmbuild’ function in HMMER-3.1B2 to 

construct each pHMM. We ran the pHMMs of the 52 proteins against all 1,107 proteomes using 

the ‘hmmsearch’ function. For a gene to be considered present, we set a bitscore threshold of at 

least 50 and an e-value threshold of less than 1 x 10-10.  We used the TBLASTN function of 

BLAST+, V2.8.1 with a bitscore threshold of 50, e-value cutoff of 1 x 10-6, and 50% minimum 

query coverage to verify MMR gene absence using the protein sequence of the gene in question 

and the 1,107 Ascomycota genomes. We used the Interactive Tree of Life (iTOL), v4 (Letunic 

and Bork, 2019) to visualize the conservation of MMR genes on the Ascomycota phylogeny and 

to map losses on it. To further verify gene absences in HLT and LLT with C. variabilis amino 

acid sequences, we used the TBLASTN function of BLAST+, V2.8.1 with an e-value threshold 

of less than 1 x 10-5, a word size of 5 or more, and minimum query coverage of 80% (Milo et al., 

2019).  
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Microsatellite identification and characterization 

To identify microsatellites and evaluate their numbers and lengths between genomes with 

substantial MMR gene loss against those with higher levels of MMR gene conservation, we used 

the Microsatellite Identification tool (MISA), v2.0 (Beier et al., 2017). Specifically, we 

compared the microsatellites of two groups of taxa, each of which contained four species. The 

group of higher loss taxa (HLT) contains the powdery mildews Blumeria graminis, Erysiphe 

necator, Erysiphe pisi, and Erysiphe pulchra, which show high levels of MMR gene loss relative 

to other ascomycetes. The group of lower loss taxa (LLT) contains four closely related species 

with low levels of MMR gene loss, similar to patterns seen across the rest of the phylum: 

Articulospora tetracladia, Ascocoryne sarcoides, Cairneyella variabilis, and Phialocephala 

scopiformis. The length minimums used for MISA to identify a microsatellite are as follows: 1 

base pair (bp) motifs must repeat 12 times, 2 bp motifs must repeat 6 times, 3-6 bp motifs must 

repeat 5 times. All values used are MISA defaults, except the mononucleotide parameter, which 

was increased from the default value of 10 repeats to 12 (Temnykh et al., 2001; Beier et al., 

2017). A 2-way ANOVA test was performed to test for significance in the number of 

microsatellites controlled by genome size of each motif length between HLT and LLT. If the 2-

way ANOVA rejected the null hypothesis (α = 0.05), pairwise comparisons were made with the 

Tukey Honest Significant Differences (HSD) test. We performed the statistical analysis using R, 

v3.4.1 (https://www.r-project.org/) and made the figures using ggplot2, v3.1.0 (Wickerham, 

2016), and ggpubfigs, v1.0.0 (Steenwyk, 2020). 

 

https://www.r-project.org/
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Estimation of mutational bias and rate of sequence evolution 

To characterize the mutational spectra and estimate the rate of sequence evolution between HLT 

and LLT, we first identified and aligned orthologous sequences across all eight genomes. 

Orthologous single-copy protein sequences from genes present in all eight genomes (n = 823) 

were identified using the BUSCO, v4.0.4 (Waterhouse et al., 2018b) pipeline and the OrthoDB, 

v10, Ascomycota database (Creation date: 2019-11-20) (Kriventseva et al., 2019). We hereafter 

refer to the 823 single-copy genes as BUSCO genes. BUSCO genes were aligned using MAFFT, 

v7.402 (Katoh et al., 2002), using the same settings described above. Codon-based alignments 

were generated by threading the corresponding nucleotide sequences onto the protein alignment 

using ‘thread_dna’ function in PhyKIT, v0.1 (Steenwyk et al., 2020a). 

 

To examine patterns of substitutions, we used codon-based alignments to identify nucleotides 

that differed in a given taxon of interest compared to C. variabilis, which was the sister taxon to 

a clade comprised of the other seven genomes of interest in the Ascomycota phylogeny. More 

specifically, we compared the character states for a species of interest to C. variabilis for each 

site of each alignment, tracking codon position information (i.e., first, second, or third codon 

position). We also determined if the substitution was a transition or transversion and examined 

substitution directionality (e.g., A|T to G|C or G|C to A|T) using C. variabilis as the outgroup. 

These analyses were completed using custom python scripts that utilize functions in Biopython, 

v1.70 (Cock et al., 2009b).  

 

Finally, we used the codon alignments to compare the rate of sequence evolution between HLT 

and LLT. Specifically, we measured the ratio of the rate of nonsynonymous substitutions to the 
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rate of synonymous substitutions (dN/dS or ω) along the species phylogeny for each gene using 

the CODEML function in PAML, v4.9 (Yang, 2007). For each test, the null hypothesis (Ho) was 

that all branches had the same ω value (model = 0); the alternative hypothesis (HA) was that all 

HLT branches, including the branch of their most recent common ancestor, had one ω value and 

all other branches had a distinct ω value (model = 2). To determine if the alternative hypothesis 

was a better fit than the null hypothesis (α = 0.05) we used a likelihood ratio test.  

 

Data availability 

Supporting statistical analysis, the Ascomycota phylogeny with species names, and 2 

supplementary data files (MMR gene presence/absence matrix and ω output) are available via 

figshare at https://doi.org/10.6084/m9.figshare.14410994. The data supporting the phylogeny of 

Ascomycota are available at https://doi.org/10.6084/m9.figshare.12751736. 

 

 

Results 

MMR genes are highly conserved across the fungal phylum Ascomycota 

By examining the presence of 52 MMR genes using a combination of sequence similarity search 

algorithms across the genomes of 1,107 fungal species, we found that the MMR pathway is 

highly conserved across Ascomycota (a median of 49 / 52 MMR genes per species; Fig. 34; File 

S1 from Phillips et al., 2021). Sixteen genes were present in all species; these included five 

recognition genes (MSH1, MSH2, MSH3, MSH4, and MSH6), one incision gene (MLH1), one 

removal gene (DIN7), five resynthesis genes (CDC6, RFC2, RFC3, RFC4, and RFC5), and all 

four ligation genes (ADL1, CDC17, CDC9, and LIG1). Few genes experienced extensive loss. Of 

https://doi.org/10.6084/m9.figshare.14410994
https://doi.org/10.6084/m9.figshare.12751736
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the 11 most commonly lost genes, which were lost in >5% of species, two (MYH1 and UVE1) 

were lost in the common ancestor of Saccharomycotina, in addition to losses observed in other 

taxa. The remaining nine genes are unevenly distributed across functions; seven are involved in 

DNA resynthesis (CDC27, CDM1, POL32, POLD3, POLD4, RPA3, and SSB3), one is involved 

in mismatch recognition (HSM3), one is involved in incision (HNT3). These findings suggest 

that genes in the MMR pathway are well conserved across Ascomycota.    

 

A comparison of our results with those reported in Milo et al. (2019) revealed similar patterns of 

gene presence and absence. For example, Milo et al. (2019) found that MYH1 was absent from 

much of Pezizomycotina, which is consistent with our results. However, we did identify a few 

differences (inferred losses by Milo et al. (2019) vs. inferred presence in our analyses), which 

suggest that our pipeline is more conservative in classifying gene losses. We surmise that these 

differences stem from differences in the gene detection pipelines employed and the divergent 

objectives of the two studies; Milo et al. (2019) aimed to identify orthologs via a reciprocal best 

BLAST hit approach, whereas we aimed to identify homologs using pHMMs with absences 

verified using TBLASTN. Importantly, analysis of the human proteome using our pipeline 

detected all known human orthologs except for HSM3, POL32, RPA3, and SSB3, suggesting that 

our pipeline is well suited to detect MMR genes within Ascomycota, but that a few MMR genes 

may be more rapidly evolving and therefore more difficult to detect. 

 

Extensive loss of MMR genes in a lineage of powdery mildews 

Although MMR genes are highly conserved across Ascomycota, we found that a lineage of 

obligate plant parasite powdery mildews have among the fewest MMR genes of the 1,107 
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Ascomycota species examined. We further verified gene losses in HLT and in closely related 

taxa that experienced fewer losses (hereafter referred to as lower loss taxa or LLT) by 

performing TBLASTN using the amino acid sequences found by the pHMM for each MMR gene 

of Cairneyella variabilis, an LLT with a highly conserved MMR pathway, as queries and with 

thresholds described by Milo et al. (2019). This resulted in 9 MMR genes losses in Erysiphe 

necator, 21 in Erysiphe pisi, and 7 in Erysiphe pulchra (Fig. 35). E. necator has been previously 

documented to have a high rates of genome evolution (Milo et al., 2019) and genomic instability 

(Jones et al., 2014). Blumeria graminis, which is sister to the Erysiphe genus, has lost 5 MMR 

genes; previous studies reported extensive gene loss in diverse pathways in this species, 

generally in genes thought to be unnecessary for its biotrophic lifestyle (Spanu et al., 2010). In 

contrast, the closely related species C. variabilis and Phialocephala scopiformis only lack 

MYH1, an adenine DNA glycosylase that is lost in most filamentous fungi (Chang et al., 2001). 

In addition to MYH1, closely related species Articulospora tetracladia lacks HSM3, which has 

been lost in many Pezizomycotina genomes. Ascocoryne sarcoides lacks MYH1 and POL32, a 

DNA polymerase  subunit, which is part of a larger complex that participates in multiple DNA 

repair pathways, including nucleotide excision repair and base excision repair (Gerik et al., 

1998). Much like the rest of the phylum, genes associated with resynthesis are lost more 

frequently, but Erysiphe and Blumeria have lost genes associated with all MMR functions (Table 

S2 from Phillips et al., 2021) except ligation. In addition, seven of the observed MMR gene 

losses occur nowhere else in Ascomycota: EXO1 (excision), MLH2 (incision), MLH3 (incision), 

MSH5 (recognition), PMS1 (incision), PMS2 (incision), and RFC1 (resynthesis). Taken together, 

these results raise the hypothesis that HLT may have a partially functional MMR pathway. 
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While select Erysiphe taxa have lost more genes than any other species, there are other species 

with moderate to high levels of MMR gene loss across the phylum. A total of 318 species have 

lost 5 or more genes across Ascomycota: 5 species in subphylum Taphrinomycotina, 239 in 

Saccharomycotina, and 74 in Pezizomycotina. The disproportionate number of 

Saccharomycotina and Taphrinomycotina species is consistent with our knowledge that 

organisms in these lineages have, on average, a smaller number of DNA repair genes compared 

to Pezizomycotina (Milo et al., 2019). MMR gene loss in certain Saccharomycotina lineages, 

such as in some species from the genera Hanseniaspora (Steenwyk et al., 2019a), 

Tetrapisispora, and Dipodascus, is comparable to the loss observed in HLT. However, only 9 

other species in Pezizomycotina showed MMR gene loss to the same degree as any Erysiphe 

species. In general, species with elevated levels of gene loss primarily lost genes noted as 

commonly lost earlier in this paper (see “MMR genes are highly conserved across the fungal 

phylum Ascomycota”), with occasional losses in other genes. 

 

There was a notable discrepancy between the presence and absence of MMR genes inferred by 

pHMM versus TBLASTN in HLT that was not observed in other species. When measured by 

pHMM, E. pulchra lost 42 MMR genes, as opposed to 9 when using TBLASTN with model 

organism sequences as queries and 7 when using TBLASTN with C. variabilis sequences as 

queries to verify the absences. E. necator and E. pisi lost 51 MMR genes according to our 

pHMMs, as opposed to 10 and 22 by model organism TBLASTN and 9 and 21 with C. variabilis 

TBLASTN, respectively. B. graminis lost 9 MMR genes by pHMM, 6 by model organism 

TBLASTN, and 5 by C. variabilis TBLASTN. In the closely related LLT C. variabilis, P. 

scopiformis, A. tetracladia, and A. sarcoides, genes deemed absent by pHMMs were also 



241  

deemed absent in our model organism and C. variabilis TBLASTN searches; the sole exception 

was HSM3, which was identified as present in A. sarcoides using C. variabilis TBLASTN. Even 

though pHMMs are more sensitive in sequence similarity searches and typically outperform 

TBLASTN when detecting genes on an evolutionary timescale (Yoon, 2009), this discrepancy is 

likely explained by the lower annotation quality of some HLT species and the lower genome 

quality for E. pisi (Table S1 from Phillips et al., 2021). 

 

Higher MMR gene loss taxa show increased number and length of microsatellites 

Examination of microsatellites revealed microsatellite expansions in HLT in comparison to LLT. 

Specifically, we found statistically significant increases in the number and length of 

microsatellites in HLT compared to LLT (Fig. 36A, Tables 1 from Phillips et al., 2021, S3 from 

Phillips et al., 2021, and S4 from Phillips et al., 2021). Overall, after controlling for genome size, 

HLT had significantly more microsatellites than LLT (F = 34.83; p < 0.001; ANOVA; Table S3 

from Phillips et al., 2021). This effect was driven by the very large increase in the number of 

mononucleotide runs in Erysiphe and Blumeria (Fig. 36C) (p < 0.001; Tukey HSD; Table S3 

from Phillips et al., 2021). There was no statistically significant difference between the groups in 

the numbers of microsatellites with a 2-6 bp motif length (Table S3 from Phillips et al., 2021). 

HLT showed significantly higher average microsatellite lengths at every motif size than LLT 

(Fig. 36B) (p < 0.01 for 1 bp, p < 0.001 for all other motif lengths; Wilcoxon rank sum test; 

Table S4 from Phillips et al., 2021). HLT have an increased number of mononucleotide runs 

(after controlling for genome size) and an increase in length of microsatellites of all motif 

lengths, suggesting that the MMR pathway’s function is compromised in these species. 
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Fig. 36. Genomes of higher loss taxa (HLT; blue bars) show a proliferation of mononucleotide 

runs and an increase in their microsatellite lengths compared to lower loss taxa (LLT; grey bars). 

(A) Examination of microsatellites in HLT and LLT (gray bars) showed a significant increase in 

the number of mononucleotide runs in HLT (p < 0.001; ANOVA, Tukey HSD; Table S3 from 

Phillips et al., 2021). Asterisks in graph indicate significance; **: p < 0.01; ***: p < 0.001. (B) 

Microsatellites of each motif length are significantly longer in HLT (p < 0.01 for 1 bp, p < 0.001 

for all other motif lengths; Wilcoxon rank sum test; Table S4). (C) Mononucleotide runs are 

longer and more numerous in HLT than LLT (Tables S3 from Phillips et al., 2021 and S4 from 

Phillips et al., 2021). 

 

Higher loss taxa show mutational biases 

By examining patterns of substitutions among HLT and LLT we found that HLT displayed 

stronger mutational biases associated with impaired DNA repair pathway function in comparison 

to LLT. For example, significantly more substitutions were observed at all codon positions in 

HLT vs. LLT (Fig. 36A) (p < 0.01; Tukey HSD; Table S5 from Phillips et al., 2021) and a 

significant bias towards substitutions in the A|T direction (Fig. 36B) (p < 0.001; Tukey HSD; 

Table S6 from Phillips et al., 2021). HLT also had a lower ratio of transitions to transversions 

(0.92 ± 0.04) than LLT (0.99 ± 0.02), though this is not statistically significant (Fig. 36C) (p = 

0.06; Wilcoxon rank sum exact test; Table S7 from Phillips et al., 2021). Additionally, HLT had 

lower GC content (HLT: 40.10 ± 0.02% vs. LLT: 47.49 ± 0.01%). Linear regression revealed a 
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significant decrease (F = 8.661, p = 0.026; Table S8 from Phillips et al., 2021) in GC content of 

the genomes as the number of MMR genes lost increases (Fig. 36D).  

 

 

Fig. 37. Higher loss taxa (HLT) show diverse types of mutational bias compared to lower loss 

taxa (LLT). 

(A) HLT (blue bars / fonts) show increased counts in base substitution at every codon position 

when compared to LLT (gray bars / fonts) (p < 0.01; ANOVA, Tukey HSD; Table S5 from 

Phillips et al., 2021). (B) HLT show significant mutational bias towards mutation in the A|T 

direction, while this trend is not significant in LLT (p < 0.001; p = 0.27; ANOVA, Tukey HSD; 

Table S6 from Phillips et al., 2021). (C) HLT show a decreased ratio of transitions to 

transversions when compared to LLT, although this difference is not statistically significant (p = 

0.06; Table S7 from Phillips et al., 2021). (D) Genome GC content decreases with increasing 
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MMR gene loss (adjusted R2 = 0.5225; p = 0.026; linear regression; Table S8 from Phillips et al., 

2021). Asterisks in graphs indicate significance; **: p < 0.01; ***: p < 0.001. 

 
 

Higher loss taxa have experienced accelerated rates of sequence evolution 

To test if the rate of evolution of HLT differed from that of LLT, we performed ω-based branch 

tests. Our null hypothesis was that all branches of the phylogeny for our selected eight species 

had the same rate of evolution, while our alternate hypothesis posited that HLT branches, 

including the branch of their most recent common ancestor, experienced a different rate of 

sequence evolution than LLT branches. We found that 60.75% of genes rejected the null 

hypothesis (α = 0.05; n = 500) and 39.25% failed to reject the null (n = 323) (Fig. 38A; File S2 

from Phillips et al., 2021). Of the genes which rejected the null hypothesis, 79.80% (n = 399) 

experienced higher rates of substitution in HLT, which constitutes 48.48% of all genes tested 

(Fig. 6A). Among the genes that rejected the null hypothesis, the difference between the ω values 

for the HLT (median ω = 0.0899) and the LLT (median ω = 0.0567) showed accelerated rates of 

substitution for HLT branches (Fig. 38B). These results suggest that MMR gene loss is 

associated with a genome-wide signature of accelerated mutation rates. 

 

Discussion 

Using sequence similarity searches, we examined the conservation of the MMR pathway across 

1,107 ascomycete species. The near universal conservation of the vast majority of MMR genes 

across the phylum confirms this pathway’s known critical role for DNA maintenance (Schofield 

and Hsieh, 2003; Kunkel and Erie, 2005; Fukui, 2010). However, we also discovered that a 

lineage of Erysiphe and Blumeria powdery mildews, named HLT, have experienced significant 
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MMR gene loss (Fig. 35). HLT exhibit increases in mononucleotide run count, microsatellite 

length, mutational biases, and rate of evolution (Figs. 36, 37, and 38), suggesting that the 

 

 

Fig. 38. Powdery mildew higher loss taxa (HLT) show accelerated rates of evolution. 

(A) Most (60.75%; n = 500) BUSCO genes reject the null hypothesis that HLT branches 

experience the same rate of substitution as LLT branches. 48.48% of BUSCO genes support a 

higher rate of evolution for HLT (n = 399; in blue), 12.27% support a higher rate of evolution for 

LLT (n = 101; in grey), and 39.25% (n = 323) fail to reject the null hypothesis that the rate of 

substitution is uniform across HLT and LLT branches (in white). Among genes that support the 

alternative hypothesis, 79.80% (n = 399) support that Erysiphe and Blumeria evolve more 

quickly than LLT. (B) Among genes which reject the null hypothesis, the distribution of 

differences between ω values for HLT and LLT branches show elevated substitution rates in 

HLT.  

 

function of their MMR pathway may be impaired. While DNA repair mechanisms are present in 

all eukaryotes and are highly conserved, there is mounting evidence of exceptions to this rule in 

the fungal kingdom (Steenwyk et al., 2019a; Steenwyk, 2021b). The increased MMR gene 

absence observed in HLT correlates with changes in the microsatellite compositions of their 

genomes. The significant difference between HLT and LLT in the number of mononucleotide 
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runs is consistent with mutational patterns present in human cancers and MMR deficient yeast 

cells (Arzimanoglou et al., 1998; Lang et al., 2013). Mononucleotide runs are the most prone to 

replication fork slippage and are used to diagnose MSI in tumors (Richman, 2015). In addition to 

an increase in the number of mononucleotide runs (Fig. 36A), HLT showed significantly longer 

microsatellites for each motif length than LLT (Fig. 36B), which suggests impaired MMR 

function and increased replication fork slippage. 

 

Examination of HLT genomes revealed mutational signatures suggesting that the MMR pathway 

has been impaired by the observed gene losses. Patterns of substitutions suggest the loss of 

MMR genes leads to increased substitution rates (Fig. 37A) and lower GC content (Fig. 37D). 

More specifically, the prominent A|T bias of substitutions in the HLT is likely driven by the 

known A|T bias of mutations previously observed in bacteria and eukaryotes, including S. 

cerevisiae (Keightley et al., 2009b; Hershberg and Petrov, 2010; Lynch, 2010; Zhu et al., 

2014b). Furthermore, GC content decreases in proportion to the number of MMR genes lost in 

the HLT and LLT, which was also observed among Hanseniaspora, a lineage of budding yeasts 

that have lost diverse DNA repair genes (Steenwyk et al., 2019a). There is no significant 

difference between the transition to transversion (Ts/Tv) ratios of the HLT (0.92 ± 0.04) and 

LLT (0.99 ± 0.02), though the trend follows what we would expect for HLT having less efficient 

DNA repair. Both lineages exhibit near-neutral Ts/Tv ratios (Lynch et al., 2008b; Zhu et al., 

2014b). Examination of ω values suggests that faster rates of sequence evolution in HLT 

compared to the LLT may be associated with MMR gene loss. Long branches, which reflect 

more substitutions per site, have been previously reported elsewhere for E. necator (Milo et al., 

2019), providing independent support to our findings. 
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Species in the LLT lineage show a diversity of ecologies. For example, A. sarcoides is saprobic 

fungus which grows on trees (Gianoulis et al., 2012), A. tetracladia is a globally-distributed 

aquatic hyphomycete (Seena et al., 2012), C. variabilis is an ericoid mycorrhizal fungus 

(Midgley et al., 2016), and P. scopiformis is a foliar endophyte (Walker et al., 2016). In contrast, 

species in the genera Erysiphe and Blumeria are all powdery mildews and obligate plant 

parasites. B. graminis is the only species in the genus Blumeria (Inuma et al., 2007), whereas 

there are ~450 known species in the genus Erysiphe (Takamatsu et al., 2015). The Erysiphe 

species we sampled are distributed across the phylogeny of the genus (Takamatsu et al., 2015; 

Ellingham et al., 2019); phylogenetic analyses by Takamatsu et al. (2015) placed E. pisi and E. 

pulchra in separate phylogenetic groups that diverged 15-20 million years ago, and analyses by 

Ellingham et al. (2019) showed that E. pisi and E. necator are distantly related (Ellingham et al., 

2019). Considering our taxon sampling and obligate plant parasitic lifestyle of Erysiphe species, 

we hypothesize that our findings likely apply to all species in the genus. 

 

In our approach to investigate the conservation of the MMR pathway in Ascomycota, we chose 

to be inclusive when selecting genes that function as part of the pathway and conservative when 

ruling genes absent. Some genes were computationally annotated as belonging to the MMR 

pathway based on sequence homology and others are implicated in multiple pathways. That said, 

of the 24 MMR genes lost in at least one HLT species, 16 are included in the KEGG MMR 

pathway entries for our three model organisms, suggesting that many of the observed losses 

concern genes directly involved in MMR. In addition, there may be other contributing factors to 

the observed mutational differences between HLT and LLT, such as dysfunction in other DNA 
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repair pathways, loss of methyl transferases, and differences in chromatin structure (Steenwyk et 

al., 2019a; Möller et al., 2021). For example, previous studies have identified the loss of genes 

involved in the repeat-induced point (RIP) mutation pathway in powdery mildews (Spanu et al., 

2010; van Wyk et al., 2021). Loss of genes in the RIP pathway in HLT could contribute to the 

elevated mutation rates we observed relative to LLT. The MMR pathway is required for 

maintaining heterochromatin stability in S. cerevisiae; dysfunction in this pathway could 

potentially lead to genome instability within the HLT (Dahal et al., 2017). MMR is more error 

prone in heterochromatin than euchromatin, likely due at least in part to mechanical accessibility 

of the MMR machinery (Sun et al., 2016; Dahal et al., 2017). While base-base mismatches are 

repaired less efficiently in heterochromatin than in euchromatin, single nucleotide insertions and 

deletions are repaired with similar efficiency in euchromatin and heterochromatin (Dahal et al., 

2017); therefore, differences in chromatin structure could have contributed to some of the 

observed mutational differences but not to the observed differences in mononucleotide runs and 

microsatellite repeats. 

 

Loss of function in the MMR pathway may be advantageous in certain environments or under 

certain lifestyles. For example, strains of human pathogens with impaired MMR function are 

found in environments where antifungal drugs are present. Some of these strains have evolved 

drug resistance, so the elevated mutation rate generated by MMR gene loss may be adaptive 

under certain stressful situations (Billmyre et al., 2017; Rhodes et al., 2017a; Billmyre et al., 

2020). Species with higher levels of MMR gene loss may be associated with a parasitic lifestyle, 

though not all parasites have high levels of MMR gene loss; dysfunction in this pathway may be 

more adaptive, or at least less detrimental, to these organisms, as seen in the HLT. Loss of DNA 
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repair pathways is also observed in other parasites and may contribute to elevated mutation rates 

(Gill and Fast, 2007; Derilus et al., 2021). Organisms with parasitic lifestyles tend to evolve 

more rapidly than free-living organisms; while these mechanisms are unknown, previous work 

has identified that the loss of the classical nonhomologous end joining (C-NHEJ) pathway is 

common in this lifestyle and may even be a contributing factor (Nenarokova et al., 2019). 

Previous studies of genome structure in E. necator have found genome expansion largely driven 

by transposable elements and suggest that genome instability, particularly in copy number 

variants, can mediate rapid evolution of fungicidal resistance (Jones et al., 2014). The evolution 

of fungicide resistance in powdery mildews has implications for agriculture; major crops are 

impacted by these pathogens and some are able to quickly evolve resistance to antifungal 

chemicals, with resistance evolution accelerated by increased use (Jones et al., 2014; Vielba-

Fernández et al., 2020). More broadly, genome instability among HLT taxa reflects their 

parasitic lifestyle, which is associated with gene loss and plastic genomic architecture (Schmidt 

and Panstruga, 2011). Gene loss in primary and secondary metabolism, enzymes acting on 

carbohydrates, and transporters has been documented in B. graminis, as well as massive 

expansion in retrotransposons and genome size, reflecting extreme genomic changes associated 

with its parasitic lifestyle (Spanu et al., 2010). The lost genes are involved in diverse pathways, 

including anaerobic fermentation, biosynthesis of glycerol from glycolytic intermediates, and 

nitrate assimilation, and include multiple subfamilies of transporters (Spanu et al., 2010). Given 

their extreme genomic changes and importance to agriculture, Blumeria and Erysiphe may be 

novel models to study the outcome and evolutionary trajectory of sustained loss of MMR 

pathways.  
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CHAPTER 9 

Pathogenic allodiploid hybrids of Aspergillus fungi8 

 

Introduction 

Interspecific hybridization can result in the formation of new species that substantially differ in 

their genomic and phenotypic characteristics from either parental species. One common 

mechanism by which interspecific hybrids can originate is allopolyploidy, which merges and 

multiplies the parental species’ chromosomes (Baack and Rieseberg, 2007; Abbott et al., 2013). 

Allopolyploid hybrids may be more similar to one parent in some traits, reflect both parents in 

others, or may differ from both in the rest. Hybrids’ distinct phenotypic profiles means that they 

can potentially colonize new habitats (Rieseberg, 2003; Rieseberg et al., 2007), whereas their 

polyploidy means that they can quickly become reproductively isolated from both parental 

species, forming a new species in the process (Baack and Rieseberg, 2007). Allopolyploids are 

relatively common in plants, but are also found in several other lineages, including in animals 

(Mable et al., 2011) and fungi (Dunn and Sherlock, 2008; Depotter et al., 2016). 

 

Among fungi, the most well-known example of allopolyploidy is the whole genome duplication 

in an ancestor of the baker’s yeast Saccharomyces cerevisiae (Wolfe and Shields, 1997; Marcet-

Houben and Gabaldón, 2015; Wolfe, 2015). Importantly, allopolyploidy is known from both 

fungal pathogens of plants (Depotter et al., 2016; Stukenbrock, 2016) and of animals 

 

8This work is published in: Steenwyk, J. L., Lind, A. L., Ries, L. N. A., dos Reis, T. F., Silva, L. 

P., Almeida, F., et al. (2020). Pathogenic Allodiploid Hybrids of Aspergillus Fungi. Curr. Biol. 

30, 2495-2507.e7. doi:10.1016/j.cub.2020.04.071. 
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(Lin et al., 2009; Mixão and Gabaldón, 2018). For example, the crucifer crop pathogens 

Verticillium longisporum and Verticillium dahliae are allopolyploid hybrids, as is the onion 

pathogen Botrytis allii (Nielsen and Yohalem, 2001; Inderbitzin et al., 2011; Depotter et al., 

2016). Among fungal pathogens that infect humans, allopolyploidy has been reported in the 

ascomycete budding yeasts Candida metapsilosis (Pryszcz et al., 2015) and Candida 

orthopsilosis (Schröder et al., 2016) and in the basidiomycete yeast Cryptococcus neoformans X 

Cryptococcus deneoformans (Rhodes et al., 2017b). To our knowledge, allopolyploidy has never 

been reported in human pathogenic filamentous fungi. 

 

Aspergillus-related diseases, collectively known as aspergillosis, are caused by various species in 

the Aspergillus genus of filamentous fungi (Barnes and Marr, 2006). Although the saprophytic 

and ubiquitous airborne species Aspergillus fumigatus (section Fumigati) is responsible for most 

infections, several other species are also pathogenic (Brown and Goldman, 2016; Paulussen et 

al., 2017; van de Veerdonk et al., 2017; Rokas et al., 2020a). One such species is A. nidulans 

(section Nidulantes); even though rarely pathogenic, A. nidulans is of interest because it is a 

major cause of invasive aspergillosis infections in chronic granulomatous disease (CGD) patients 

(Henriet et al., 2012). CGD is a genetic disorder that compromises the ability of phagocytes to 

produce reactive oxygen species, which act as broad range antimicrobial chemicals (Fang, 2011; 

Henriet et al., 2012). Strikingly, among CGD patients, A. nidulans is harder to treat than the 

more common pathogen A. fumigatus (Dotis and Roilides, 2004; Henriet et al., 2012).  

 

To gain insights into A. nidulans pathogenicity, we sequenced 9 clinical isolates that were 

originally identified as A. nidulans from patients with various pulmonary diseases, including 2 
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isolates from CGD patients. Two of these isolates belong to A. nidulans and have been described 

in detail elsewhere (Bastos et al., 2020a). However, our phenotypic and genomic analyses 

showed that 6 of the remaining 7 isolates are not A. nidulans but rather allodiploid hybrids of 

Aspergillus latus, a species that arose from allodiploid hybridization between Aspergillus 

spinulosporus and an unknown second parental species closely related to Aspergillus 

quadrilineatus (both from section Nidulantes). Our analyses also revealed that the seventh isolate 

belongs to A. spinulosporus.  

 

Phenotypic characterization of A. latus isolates, their parental species, and A. nidulans for 

diverse infection-relevant traits revealed two key findings. The first finding is that A. latus 

isolates exhibit strain heterogeneity for several infection-relevant traits. For example, we 

observed wide variation between A. latus isolates in their virulence in a disease model as well as 

in their interactions with human immune cells. The second finding is that A. latus isolates are 

phenotypically distinct from A. spinulosporus, A. quadrilineatus, and A. nidulans. For example, 

we found that A. latus hybrid spores are better at evading macrophage engulfment as well as 

evading hyphal killing and inhibition of germination by neutrophils than A. nidulans or A. 

spinulosporus and are more resistant to antifungals and oxidative stressors than A. nidulans and 

A. quadrilineatus. From a clinical perspective, our discovery of allodiploid fungal pathogens of 

humans suggests that accurate taxonomic identification of Aspergillus clinical isolates is a key 

first step to disease management. From an evolutionary perspective, our discovery suggests that 

allodiploid hybridization is a general mechanism of genomic and phenotypic diversification 

among human fungal pathogens. 

 



254  

Materials and Methods 

Fluorescence-assisted cell sorting for DNA content determination 

Asexual spores (conidia) were collected, centrifuged (13,000 rounds per minute for 3 minutes) 

and washed with sterile 1 x phosphate-buffered saline (8 grams sodium chloride, 0.2 grams 

potassium chloride, 1.44 grams disodium phosphate, 0.24 grams monopotassium phosphate per 

liter of sterilized water). For cell staining, the protocol described by Almeida et al. (Almeida et 

al., 2007) was followed with modifications. Following overnight fixation with 70% ethanol 

(volume / volume) at 4ºC, spores were harvested, washed and suspended in 850 microliter of 

sodium citrate buffer (50 millimolar sodium citrate; pH=7.5). Spores were subsequently 

sonicated using four ultrasound pulses at 40W for 2 seconds with an interval of 1 to 2 seconds 

between pulses. Sonicated spores were treated for 1 hour at 50ºC with RNase A (0.50 milligrams 

/ milliliter; Invitrogen, Waltham, Massachusetts, USA) and for 2 hours at 50ºC with proteinase K 

(1 mg/mL; Sigma-Aldrich, St. Louis, Missouri, USA). Spores were stained overnight with SYBR 

Green 10,000x (Invitrogen™, Carlsbad, CA, USA) diluted 10-fold in Tris-

ethylenediaminetetraacetic acid (pH 8.0), at a concentration of 2% (volume / volume) at 4ºC. 

Finally, Triton® X-100 (Sigma-Aldrich) was added to samples at a final concentration of 0.25% 

(volume / volume). Stained spores were analyzed in a Fluorescence-assisted cell sorting LSRII 

flow cytometer (Becton Dickinson, NJ, USA) with a 488 nanometer excitation laser. Signals 

from a minimum of 30,000 cells per sample were captured in fluorescein isothiocyanate channel 

(530 nanometers ± 30 nanometers) at low flow rate of ~1,000 cells / second and an acquisition 

protocol was defined to measure forward scatter and side scatter on a four-decade logarithmic 

scale and green fluorescence on a linear scale. Fluorescence-assisted cell sorting DIVA was used 
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as the acquisition software. Results were analyzed with the R package FLOWVIZ, version 1.46.1 

(Sarkar et al., 2008). 

 

Asexual spore size measurements 

The diameters of 100 spores for each isolate were measured under a Carl Zeiss (Jena, Germany) 

AxioObserver.Z1 fluorescent microscope equipped with a 100-W HBO mercury lamp using the 

100 x magnification oil immersion objective and the AXIOVISION, software v.3.1.  

 

DNA extraction and sequencing 

Frozen mycelia of all isolates were ground in liquid nitrogen and genomic DNA was extracted as 

previously described (Malavazi and Goldman, 2012; Mead et al., 2019b). Standard techniques 

for manipulation of DNA were used (J. Sambrook, D.W. Russell, 2001). The genomes of all 

clinical isolates and the type strain of A. latus (9 in total) were sequenced at the Genomic 

Services Lab of Hudson Alpha (Huntsville, Alabama, USA) on an Illumina HiSeq 2500 

sequencer; the sole exception was A. quadrilineatus NRRL 201T, which was sequenced using on 

a NovaSeq S4 at the Vanderbilt Technologies for Advanced Genomes facility (Nashville, 

Tennessee, USA). All isolates were sequenced using paired-end sequencing (150 bp) with the 

Illumina TruSeq library kit. Additionally, the type strain of A. latus and the clinical isolates 

MM151978 and NIH were also sequenced using mate-pair sequencing (150 bp) using the 

Illumina Nextera Mate Pair Library kit with an insert size of 4 kilobases. The genome coverage 

of each isolate was greater than 150X. Both the raw short-read sequence data and the genome 

assemblies are publicly available (see File S4 for accession numbers). 
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Genome assembly and annotation 

All genomes were assembled with the iWGS pipeline (Zhou et al., 2016) using DIPSPADES, 

version 1.0 (Safonova et al., 2015) or SPADES, version 3.6.2 (Bankevich et al., 2012). Optimal k-

mer lengths were selected using KMERGENIE, version 1.6982 (Chikhi and Medvedev, 2014), and 

assembly quality was evaluated using QUAST, version 3.2 (Gurevich et al., 2013). Protein-

coding genes were predicted using AUGUSTUS, version 3.3 (Stanke and Waack, 2003), using 

Aspergillus nidulans gene annotation parameters. Predicted genes in each A. latus hybrid genome 

were annotated by reciprocal-best-BLAST against a database of all A. nidulans and A. 

spinulosporus proteins. 

 

Prediction of secondary metabolic gene clusters 

Secondary metabolic gene clusters (SMGCs) were predicted in all assembled genomes using 

ANTISMASH, version 3.0.5.1 (Weber et al., 2015). In addition, we used literature-curated SMGC 

annotations from the well-characterized A. nidulans A4 genome (Galagan et al., 2005) to identify 

SMGCs not captured by the ANTISMASH software. 

 

Assigning genes in hybrid genomes to parents of origin  

To determine the most likely parent-of-origin for each gene in a hybrid genome, we measured 

the sequence divergence between every gene in a hybrid genome and its ortholog in the A. 

spinulosporus NRRL 2395T parent (Ortiz-Merino et al., 2017). Specifically, for each gene in a 

hybrid genome, we used BLASTP, version 2.3.0 from NCBI’s BLAST+ package (Madden, 2013), 

to identify the putative A. spinulosporus ortholog. The resulting pair was then aligned using 

MAFFT, version 7.294b (Katoh and Standley, 2013), with the BLOSUM 62 matrix of substitutions 
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(Mount, 2008), a gap penalty of 1.0, 1,000 maximum iterations, a single guide tree, and the 

‘genafpair’ parameter. The associated DNA sequences were then forced onto the protein 

alignment using PAL2NAL, version 14 (Suyama et al., 2006), and the synonymous substitution 

rate Ks was calculated according to LWL85m method using YN00 module in PAML, version 4.9 

(Yang, 2007). By examining the bimodal distribution of Ks values, genes with relatively low Ks 

values (0 ≤ Ks < 0.05) were inferred to be from the A. spinulosporus parent genome and genes 

with high Ks values (0.05 ≤ Ks <10) were inferred to stem from the A. quadrilineatus-like parent 

genome. We performed the same analysis on the known, non-hybrid haploid genome of 

Aspergillus fumigatus strain A1163 compared to A. fumigatus strain Af293 (Nierman et al., 

2005) and on the known hybrid diploid genome of Zygosaccharomyces parabailii strain 

NBRC1047/ATCC56075 compared to their closest homologs in the known parent 

Zygosaccharomyces bailii strain CLIB213 (Ortiz-Merino et al., 2017) as controls. 

 

To determine the completeness of each parental genome and evaluate the efficacy of assigning 

genes in hybrid genomes to parent-of-origin, we created separate proteome FASTA files for 

genes from the A. spinulosporus and A. quadrilineatus-like regions of the genome and evaluated 

how many near-universally single copy orthologous genes were present in each parental genome 

using the BUSCO pipeline (Simão et al., 2015) with the ASCOMYCOTA database (creation date: 

2016-02-13, number of species: 75, number of BUSCOs: 1315) from ORTHODB, version 9 

(Waterhouse et al., 2013). 

 

To determine homeolog pairs between each parental genome, we used a reciprocal best blast hit 

approach. Specifically, we used the FASTA files of genes created in the previous step and 
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conducted a reciprocal best blast hit analysis between the two parental genomes using an e-value 

cutoff of 10-3. To determine if one gene was putatively pseudogenized, we employed a 

previously established approach, which compares gene lengths between the two homeologs; 

genes whose length is substantially shorter (we used an upper threshold of 80%) than their 

homeolog pair are inferred to be pseudogenes (Ortiz-Merino et al., 2017). 

  

Maximum likelihood phylogenetic and phylogenomic analyses 

To establish the taxonomic identity of the sequenced isolates, we retrieved their β-tubulin and 

calmodulin sequences by performing a nucleotide BLAST of the Aspergillus nidulans A4 β-

tubulin and calmodulin sequences against each assembled genome. In addition, β-tubulin and 

calmodulin sequences from two strains of each of Aspergillus foveolatus, Aspergillus latus, 

Aspergillus nidulans, Aspergillus pachycristatus, Aspergillus rugulosus, Aspergillus 

spinulosporus, and Aspergillus striatus and from one strain of Aspergillus corrugatus were 

retrieved from GenBank. We also retrieved the same sequences from one strain of Aspergillus 

sydowii, which served as an outgroup for the phylogeny (Chen et al., 2016). Sequences were 

aligned with MAFFT, version 7.310 (Katoh and Standley, 2013), gaps were removed with 

TRIMAL, version 1.2.rev59 (Capella-Gutierrez et al., 2009), using the ‘gappyout’ parameter, and 

the β-tubulin and calmodulin sequences for each individual strain were concatenated. A 

phylogeny was constructed from the concatenated sequences with RAxML, version 8.2.11 

(Stamatakis, 2014b), with the GTRGAMMAX model and 1,000 rapid bootstrap replicates. 

Branches with bootstrap support less than 80 were collapsed. 
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To determine the number of hybridization events that gave rise to A. latus isolates, we conducted 

phylogenomic analyses to reconstruct the evolutionary history of the A. spinulosporus parental 

genome in the A. latus hybrids and of the genes of A. spinulosporus strains NRRL2395 and 

4060. We first identified single-copy orthologous genes across the 9 strains using ORTHOFINDER, 

version 2.3.8 (Li et al., 2003) with default parameters, which employs a Markov clustering 

algorithm (van Dongen, 2000) on gene sequence similarity information derived from an ‘all-vs-

all’ approach using NCBI’s BLAST+, version 2.3.0. Out of the inferred 12,596 groups of 

orthologous genes, 5,894 were single-copy (i.e., each of the 9 isolates were represented by a 

single sequence). All 5,894 sets of corresponding nucleotide sequences were aligned using 

MAFFT, version 7.402 (Katoh and Standley, 2013), with the ‘genafpair' parameter and 1,000 

maximum iterative sequence alignment refinements. Alignments were trimmed using TRIMAL, 

version 1.2rev59 (Capella-Gutierrez et al., 2009), using the ‘gappyout’ parameter. The resulting 

sequences were concatenated into a single nucleotide data matrix (8,405,004 sites). The strain 

phylogeny was inferred using IQTREE, version 1.6.1 (Nguyen et al., 2015), with the nbest 

parameter set to 10 to increase the number of best trees used during the search. Bipartition 

support was evaluated using 5,000 ultrafast bootstrap approximation replicates (Hoang et al., 

2018). The evolutionary history of the A. quadrilineatus-like parental genome among the A. latus 

hybrids and two A. quadrilineatus strains (NRRL201T and CBS 853.96) was inferred using the 

same approach; in this case, the nucleotide data matrix was comprised of 7,385,465 sites (from 

5,079 single-copy orthologous genes out of a total of 11,814 groups of orthologous genes).  

 

Lastly, we conducted approximately unbiased topology tests (Shimodaira, 2002) using the data 

matrices from each parental genome with the ‘au’ parameter in IQTREE, version 1.6.1 (Nguyen et 
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al., 2015). Specifically, we examined if the two topologies among the 7 A. latus hybrids inferred 

using the A. spinulosporus or A. quadrilineatus-like parental genomes were significantly 

different for either genome-scale data matrix inferred from the parental genomes. During 

constrained tree search, we used a substitution model of a general time-reversible model with 

empirical base frequencies, a discrete Gamma model with 4 rate categories, and allowed for a 

proportion of invariable sites (GTR+I+F+G4) (Tavaré, 1986; Yang, 1994, 1996; Vinet and 

Zhedanov, 2011). 

 

Examination of loss of heterozygosity using copy number variation analysis 

To conservatively and accurately instances of loss of heterozygosity, we measured copy number 

variation using CONTROL-FREEC, version 9.1 (Boeva et al., 2012) and CNVNATOR, version 

0.3.2 (Abyzov et al., 2011). More specifically, we evaluated false discovery rate (FDR) and false 

positive rate (FPR) using reads from A. spinulosporus that were aligned to a “concatenated” 

genome of the A. spinulosporus and A. nidulans FGSC-A4 using 10 different window sizes (500, 

750, 1000, 1250, 1500, 1750, 2000, 3000, 4000, and 5000 base pairs). Reads were aligned with 

BWA-MEM, version 0.7.12 (Li, 2013), and duplicates reads were removed with PICARDTOOLS, 

version 2.1.1 (http://broadinstitute.github.io/picard/). In this way, we inferred the window size 

parameter that minimizes the FDR and FPR CN variable regions identified in the hybrid 

genomes. Specific parameters used for CONTROL-FREEC include a minimum and maximum 

expected GC-content of 0.3 and 0.5, respectively, and a telocentrometric parameter of 10,000. 

Default parameters were used for CNVNATOR. To identify statistically significant CN variable 

loci, we implemented a Wilcoxon Rank Sum test (Wallace, 2004) and a Kolmogorov-Smirnov 

test (Panchenko, 2006), in the case of CONTROL-FREEC and a T-test in the case of CNVNATOR. 

http://broadinstitute.github.io/picard/
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Using the resulting set of significant CN variants per window size for each program, FDR and 

FPR were calculated using the following formulas: 

𝐹𝐷𝑅 = 1 − 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)⁄  

𝐹𝑃𝑅 = 𝐹𝑃
(𝐹𝑃 + 𝑇𝑁)⁄  

where TP represents true positives, FP represents false positives, and TN represents true 

negatives. Across the 10 different window sizes, we found that CONTROL-FREEC often, but not 

always, slightly outperformed CNVNATOR (Fig. S10 from Steenwyk et al., 2020c). More 

importantly, we found that CONTROL-FREEC had an FDR and FPR of 0 (i.e., had no false 

negatives or false positives) when using a window size of 1000 and 1250. Therefore, we used 

CONTROL-FREEC with a window size of 1000 to identify CN variable loci in all other isolates. 

 

Macrophage isolation 

To obtain macrophages for a phagocytosis assay of Aspergillus asexual spores (conidia), we used 

bone marrow-derived macrophages that were isolated as described previously (Weischenfeldt 

and Porse, 2008). Briefly, macrophages were recovered from femurs of C57BL/6 wild-type mice 

(6-weeks old) and were incubated in an RPMI medium (Gibco) supplemented with 30% (volume 

/ volume) L929 growth conditioning media, 20% inactivated fetal bovine serum (Gibco), 2 

millimolar glutamine and 100 units / milliliter of penicillin-streptomycin (Life Technologies). 

Fresh media was added after 4 days of cultivation and macrophages were collected after 7 days 

and used for subsequent experiments. 
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In vitro phagocytosis by macrophages 

Phagocytosis of asexual spores (conidia) by wild-type macrophages were carried out according 

as previously described with modifications (Bom et al., 2015). 24-well plates containing a 15-

mm-diameter coverslip in each well (phagocytosis assay) and 2x105 macrophages per well were 

incubated with 1 ml of RPMI-FBS [(RPMI medium (Gibco) supplemented with 10% inactivated 

fetal bovine serum (Gibco), 2 millimolar glutamine and 100 units / milliliter of penicillin-

streptomycin (Life Technologies)] at 37ºC, 5% carbon dioxide for 24 hours. Wells were washed 

with 1 milliliter of phosphate-buffered saline before the same volume of RPMI-FBS medium 

supplemented with 1x106 spores (1:5 macrophage / spore ratio) was added in the same 

conditions. 

 

To determine phagocytosis, macrophages were incubated with spores for 1.5 hours before 

supernatant was removed and 500 µl of phosphate-buffered saline containing 3.7% 

formaldehyde was added for 15 minutes at room temperature. Sample coverslips were washed 

with 1 milliliter of ultrapure water and incubated for 20 minutes with 500 microliters of 0.1 

milligrams / milliliter calcofluor white to stain the cell wall of non-phagocytosed spores. 

Samples were washed and coverslips were viewed under a Zeiss Observer Z1 fluorescence 

microscope. In total, 100 spores were counted per sample and the phagocytosis index was 

calculated. Experiments were performed in biological triplicates. 

 

Viability of Aspergillus hyphae 

Human neutrophils from fresh venous blood of healthy adult volunteers were isolated according 

to a previous study with slight modifications (Drewniak et al., 2013), through centrifugation over 
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isotonic Percoll, lysed, and resuspended in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-

buffered saline solution. Since we did not observe any neutrophil-mediated killing of Aspergillus 

asexual spores, as also previously described (Gazendam et al., 2016), we followed the protocol 

previously reported for neutrophil-mediated inhibition of germination. Aspergillus asexual spores 

were incubated with neutrophils (0.5, 1.0, or 2.5x105 cells / milliliter; effector : target cell ratios 

of 1:1000, 1:500, or 1:200, respectively) in a 96-well plate overnight at 37ºC in RPMI 1640 

medium containing glutamine and 10% fetal calf serum (Life). The neutrophils were lysed in 

water / sodium hydroxide (pH 11.0) and spore germination was determined using an MTT 

(thiazolyl blue; Sigma-Aldrich) assay as previously reported (Dos Reis Almeida et al., 2011). 

Each isolate’s viability was calculated relative to incubation without neutrophils, which was set 

at 100% for each isolate and evaluated separately. To evaluate the viability of Aspergillus 

hyphae in the presence of neutrophils, we used a previously described protocol (Gazendam et al., 

2016). Aspergillus asexual spores were incubated overnight at 37ºC in RPMI 1640 medium 

containing glutamine and 10% fetal calf serum (Life) upon formation of a monolayer, as verified 

by microscope. Freshly isolated neutrophils (0, 1.0, 2.0, or 3.0 x 105 cells / milliliter) were 

cultured for 1 hour on the Aspergillus monolayer at 37ºC. Subsequently, the cells were lysed in 

water / sodium hydroxide (pH 11.0) and the MTT assay was performed. Each isolate’s hyphal 

viability was calculated as a percentage of its viability after incubation without neutrophils. The 

experiments were repeated three times, each performed in triplicate. 

 

NETosis assays 

Human polymorphonuclear cells (PMN) were isolated from 8 mL of peripheral blood of adult 

male healthy volunteers by density centrifugation using Mono-Poly™ Resolving Medium (MP 
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Biomedicals LLC, Irvine, CA, USA) according to the manufacturer’s instruction. PMN (5x106 / 

mL) were resuspended in Hank's Balanced Salt Solution, without calcium or magnesium, 

containing 5% FBS (Gibco®, South American, Brazil). For flow cytometry analysis, 100 µL 

(5x105 / tube) of PMN were seeded in sterile round-bottom polystyrene tubes, stimulated with 10 

nM of phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, St. Louis, MO, USA) or fungi 

samples (5x105 / tube) and then incubated for 3 hours at 37ºC and 5% CO2. In the last 30 

minutes, 1000x diluted LIVE/DEAD™ (Invitrogen, Eugene, OR, USA) was added. After that, 

PMN were made to react with SYTOX™ Green Nucleic Acid Stain (1 µM) (Invitrogen) for 10 

minutes at room temperature. Data on cells were acquired by flow cytometry using a BD 

FACSCanto II instrument (BD Bioscience, Franklin Lakes, NJ, USA). One hundred thousand 

events per sample were collected, doublet discrimination was performed using Forward Scatter 

Area (FSC-A) versus Forward Scatter Height (FSC-H) parameters, and the PMN were gated 

according to size (FSC-A) and granularity (Side Scatter Area, SSC-A). LIVE/DEAD™ and 

SYTOX™ positive cells were analyzed with FlowJo software (TreeStar, Ashland, OR, USA). 

For fluorescence microscopy, 100 µL (5x105 / well) of PMN were seeded on 13 mm glass 

coverslips in 24-wells plate and pre-incubated for 30 minutes at 37ºC and 5% CO2. After 

adherence, PMN were stimulated with PMA (10 nM) or fungi samples (5x105 / tube) and then 

incubated for 3 hours at 37ºC and 5% CO2. PMN were made to react with SYTOX™ Green (1 

µM) (Life Technologies) for 10 minutes at room temperature. The glass coverslips were 

removed and the slides were fixed with ProLong Gold Antifade Mountant with DAPI 

(Invitrogen). The images were obtained using a Leica DMI6000 Fluorescence Microscope (Leica 

Microsystems, Wetzlar, Germany). Details on the flow cytometry gating strategy used and 

microscopy images are available in the figshare repository (doi: 10.6084/m9.figshare.8114114). 
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Growth in the presence of different stresses 

To study variation in infection-relevant phenotypes between the hybrid isolates, we compared 

the radial growth of A. nidulans, A. spinulosporus, A. latus, and of all the clinical isolates in 

different temperatures (30°C, 37°C and 44°C), in the presence of increasing concentrations of 

oxidative stress-inducing compounds (paraquat and menadione), and on iron starvation. 

Although the importance of oxidative stress susceptibility is contentious for Aspergillus 

virulence (Lessing et al., 2007; Lambou et al., 2010), we chose to examine these phenotypes 

because it is well established that hosts produce reactive oxygen species in response to infection 

(Warris and Ballou, 2019). To test for the effects of iron starvation on fungal growth, MM was 

prepared without any iron source and supplemented or not with 200 μM of the iron chelators 

Bathophenanthrolinedisulfonic acid (4,7-diphenyl-1,10-phenanthrolinedisulfonic acid [BPS]) 

(Sigma) and 300 μM of 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine (ferrozine) 

(Sigma). For radial growth, isolates were grown in triplicate from 105 spores and incubated at 

37°C (except for the temperature test) for 5 days. Growth results in the presence of oxidative 

stress were expressed as ratio, dividing colony radial diameter (cm) of growth in the stress 

condition by colony radial diameter in the control (no stress condition).  

 

Hydrogen peroxide tolerance 

To test the viability of Aspergillus hyphae after exposure to hydrogen peroxide, we performed 

the XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium- 5-carboxanilide sodium 

salt]) (Sigma) assay as described by Henriet et al. (2011), but with modifications. We obtained 

hyphae from each strain by incubating 1x105 asexual spores/well in 96-well plates containing 
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MM. After 16 hours at 37°C, the medium was removed and the wells washed twice with PBS. 

Subsequently, 100 microliters of minimal media supplemented or not (control) with different 

concentrations of hydrogen peroxide (1, 3 and 5 millimolar) were added to each well. Hyphal 

viability was assayed after 90 minutes of incubation (37°C) to avoid overgrowth of hyphae. One 

hundred microliters of PBS and 100 microliters of XTT-menadione solution was added to each 

well, obtaining a final concentration of 200 micrograms / milliliter XTT and 4.3 micrograms / 

milliliter menadione and the plates were incubated for 2 hours in the dark. After centrifugation 

(3,000 x g for 10 min), the supernatants were transferred to another plate and read at 450 nm in a 

spectrophotometer. Fungal damage was defined as the percent reduction in metabolic activity 

compared to that of controls without hydrogen peroxide (viability = 100%). 

 

Antifungal susceptibility assays 

Antifungal susceptibility testing for voriconazole (Sigma-Aldrich), posaconazole (Sigma-

Aldrich), itraconazole (Sigma-Aldrich) and amphotericin B was performed by determining the 

minimal inhibitory concentration (MIC) according to the protocol established by the Clinical and 

Laboratory Standards Institute (CLSI, 2017). For caspofungin (Sigma) susceptibility, the radial 

growth in MM supplemented with different concentration of the drug was carried out similarly as 

described before (see Growth in the presence of different stresses). The results were presented as 

a ratio: growth in caspofungin(cm)/growth in the control/without caspofungin (cm). 

 

Lastly, to determine the extent of phenotypic differences across all strains tested and all traits 

measured, we conducted principal component analysis. To do so, we first scaled (i.e., 

standardized) the data to account for variables that are measured in different scales (e.g., MIC, 
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radial growth, virulence). We then conducted principal component analysis and examined each 

variable’s contribution to the variance along principal components using the R, version 3.5.2, 

packages FACTOEXTRA, version 1.0.5 (Kassambara and Mundt, 2017), and FACTOMINER, version 

1.41 (Lê et al., 2008).   

 

Data availability 

All data is publicly available through NCBI or a figshare repository. Genome assemblies are 

available through BioProject IDs PRJNA542678 and PRJNA542141; raw reads are available 

through BioProject IDs PRJNA542395, PRJNA542181, and PRJNA542141. Strain specific 

BioProject or BioSample IDs can be found in File S4 from Steenwyk et al., 2020c. The figshare 

repository (doi: 10.6084/m9.figshare.8114114) contains phenotypic measurements, parent of 

origin analysis, homeologs per hybrid isolate, fluorescence-assisted cell sorting files, 

phylogenetic and phylogenomic data matrices and tree files, and biosynthetic gene cluster 

prediction results. 

 

Results 

Six clinical isolates previously characterized as A. nidulans are diploid  

To gain insights into the genetic diversity of clinical isolates of A. nidulans, we analyzed 7 

isolates from patients with different pulmonary diseases and compared them to haploid (A4) and 

the laboratory-induced diploid (R21/R153) reference strains of A. nidulans (Table 1 from 

Steenwyk et al., 2020c). Using microscopy-based and/or molecular biology methods, all 7 

isolates had previously been identified as A. nidulans, all are similar in appearance when grown 

in standard laboratory conditions (Fig. S1 from Steenwyk et al., 2020c), and two were analyzed 
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as A. nidulans isolates in previous experimental studies (Lee et al., 2015). Examination of DNA 

content revealed that 6 / 7 isolates were more similar to the diploid A. nidulans R21/ R153 strain 

than to the haploid A. nidulans A4 strain, suggesting that these 6 isolates are diploid (Fig. 39A). 

The volume of asexual spores (conidia) is frequently proportional to the DNA content of the 

nucleus (Heagy and Roper, 1952) and examination of their size showed that the same 6 isolates 

and the diploid A. nidulans strain have significantly larger spores than isolates with haploid 

genomes (p < 0.001, respectively; Dunn’s test with Benjamini-Hochberg method of multi-test 

correction for both tests) (Fig. 39B).  

 

 
Figure 39. Six Clinical Isolates Previously Characterized as Aspergillus nidulans and the Type 

Strain of Aspergillus latus Are Diploids 

(A) Fluorescence-assisted cell sorting analysis suggests that the type strain of Aspergillus 

latus NRRL 200T and 6 clinical isolates (MM151978, NIH, ASFU1710, ASFU1908, ASFU2033, 

and MO46149) previously identified as Aspergillus nidulans have diploid genomes. In 

contrast, Aspergillus spinulosporus NRRL2395 and clinical isolate 4060 have haploid genomes. 

The haploid A. nidulans strain A4 and the laboratory-induced diploid A. nidulans strain R21/R23 

were used as references of haploid and diploid genomes, respectively. 

(B) Asexual spore diameter is significantly different between the 6 diploid clinical isolates, the 

haploid A. quadrilineatus, A. spinulosporus, and A. nidulans, and the laboratory-induced 

diploid A. nidulans (χ2 = 399.54; df = 2; p < 0.001; Kruskal-Wallis rank sum test). Additional 

pairwise comparisons are shown by brackets; all comparisons used Dunn’s test with Benjamini-

Hochberg method of multi-test correction. ∗∗∗p ≤ 0.001. Boxplot hinges correspond to the first 
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and third quartiles. Boxplot whiskers extend to values no greater than or less than 1.5 times the 

interquartile range. Data beyond this range are plotted individually. 

(C) The 6 diploid clinical isolates and the A. latus NRRL 200T strain have substantially larger 

genome sizes, gene numbers, and percent duplicated BUSCO genes compared to haploid 

genomes of representative Aspergillus species (A. clavatus NRRL 1, A. flavus NRRL 

3357, A. fumigatus Af293, A. nidulans A4, A. niger CBS 513.88, A. sydowii CBS 593.65, 

and A. versicolor CBS 583.65). Genus and species names are abbreviated using the following 

scheme: A. latus (Alat); A. spinulosporus (Aspi); A. quadrilineatus (Aqua); 

and A. nidulans (Anid). CI represents clinical isolates. Dark gray represents A. nidulans, red 

represents A. quadrilineatus, blue represents A. spinulosporus and CI 4060, and purple 

represents A. latus and diploid isolates. 

 

 

To gain further insight into the genomes of the 6 diploid isolates and 1 haploid isolate, we 

sequenced them and compared their genome size and gene number with those of representative 

Aspergillus species known to be haploid (A. clavatus NRRL 1, A. flavus NRRL 3357, A. 

fumigatus Af293, A. nidulans A4, A. niger CBS 513.88, A. sydowii CBS 593.65, and A. 

versicolor CBS 583.65) (Galagan et al., 2005; Nierman et al., 2005, 2015; Pel et al., 2007; 

Fedorova et al., 2008; de Vries et al., 2017). We found that the genomes and gene numbers of the 

diploids were significantly larger (average genome size = 69.09 ± 5.68 Mb, average gene number 

= 21,321.57 ± 2,342.13) than those of the haploid representative Aspergillus species (average 

genome size = 32.62 ± 3.05 Mb, average gene number = 11,330.75 ± 1,838.70) (Fig. 39C; Fig. 

S2; p < 0.001; Wilcoxon rank sum test for both tests; File S1). Similarly, examination of gene 

content completeness revealed a significantly higher number of duplicated near-universally 

single copy (BUSCO) genes in the diploids relative to representative Aspergillus species (Fig. 

39C; p = 0.001; Wilcoxon rank sum test). Thus, we concluded that 6 / 7 clinical isolates are 

diploids. 
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Diploid clinical isolates are Aspergillus latus, a species of hybrid origin  

To examine the evolutionary origin of the clinical isolates, we retrieved their calmodulin and β-

tubulin sequences and performed molecular phylogenetic analysis in the context of sequences of 

the two genes from all available taxa in the section Nidulantes phylogeny (Chen et al., 2016). We 

found that the haploid clinical isolate 4060 had nearly identical calmodulin and β-tubulin 

sequences to other strains of A. spinulosporus and formed a monophyletic group with them, 

suggesting that it belongs to A. spinulosporus (Fig. 40A; figshare: 

10.6084/m9.figshare.8114114). Notably, we found that all 6 diploid clinical isolates contained 

two different copies of the calmodulin and β-tubulin genes; one copy was nearly identical to A. 

spinulosporus sequences whereas the other was nearly identical to A. latus ones (Fig. 40A; 

figshare: 10.6084/m9.figshare.8114114), raising the hypothesis that the diploids originated from 

interspecific hybridization between A. spinulosporus and A. latus. 

 

To test this hypothesis, we analyzed the genome of A. spinulosporus strain NRRL 2395T 

(Steenwyk et al., 2019c) and sequenced the type strain NRRL 200T of A. latus. Examination of 

the DNA content and asexual spore size of these two species’ genomes showed that A. 

spinulosporus NRRL 2395T had similar values as clinical isolate 4060 (Fig. 39) and was also 

placed in the same phylogenetic clade (Fig. 40A); these findings confirm that clinical isolate 

4060 belongs to A. spinulosporus and that A. spinulosporus is one of the parental species 

involved in the interspecific hybridization event that gave rise to the 6 clinical isolates.  

 

In contrast, the DNA content and spore size of the genome of the type strain of A. latus NRRL 

200T were similar to those of the 6 diploid clinical isolates (Fig. 39). Furthermore, like the 6  
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Figure 40. The 6 Clinical Diploids Belong to A. latus, an Allodiploid Species Formed via 

Hybridization of A. spinulosporus and a Close Relative of A. quadrilineatus 

(A) The type strain of A. latus NRRL 200T and the 6 diploid clinical isolates have each two 

copies of the taxonomic markers β-tubulin and calmodulin. Phylogenetic analysis of their β-

tubulin and calmodulin sequences together with sequences from representative taxa in 

section Nidulantes suggests that clinical isolate 4060 belongs to A. spinulosporus, 

whereas A. latus NRRL 200T and the 6 diploid clinical isolates are derived from two parental 

genomes. Interestingly, neither of the parental genomes is A. nidulans; rather, one 

is A. spinulosporus and the other is a species closely related to Aspergillus quadrilineatus. Newly 

sequenced isolates are shown in red and blue. (B) Examination of sequence divergence (Ks; x 

axis) between each gene in an allodiploid and its best blast hit in A. spinulosporus confirms that 

the 6 diploid clinical isolates and the type strain of A. latus are allodiploid hybrids. In contrast, 

the 7th clinical isolate (4060) is a haploid A. spinulosporus. Similarly, we found no evidence 

of A. quadrilineatus NRRL 201T forming via allodiploid hybridization. (Bi) Examination of the 
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haploid, non-hybrid genome of A. fumigatus strain Af293 (negative control) shows a unimodal 

distribution, whereas examination of the diploid, hybrid genome Zygosaccharomyces 

parabailii strain NBRC1047/ATCC56075 (Zpar) shows a bimodal distribution (positive control; 

gray represents genes from one parent; black represents genes from the other parent). Red 

represents genes assigned to the A.-quadrilineatus-like parental genome; blue represents genes 

assigned to the A. spinulosporus parental genome. 

 

clinical isolates, A. latus NRRL 200T also had two copies of the calmodulin and β-tubulin gene 

sequences; one copy was nearly identical to A. spinulosporus sequences and the other copy was 

closely related to, but distinct from, A. quadrilineatus sequences (Fig. 40A; figshare: 

10.6084/m9.figshare.8114114). These results suggest that the 6 diploid clinical isolates belong to 

A. latus, and that A. latus is an allodiploid hybrid species that originated via interspecific 

hybridization between A. spinulosporus and a species closely related to A. quadrilineatus.  

 

We tested this hypothesis by performing two different sets of analyses. In the first set of 

analyses, we sequenced, assembled, and annotated the genome of the type strain (NRRL 201T) of 

A. quadrilineatus. Consistent with our hypothesis that A. latus is an allodiploid hybrid, we found 

that the A. quadrilineatus genome contains a single copy of the calmodulin and β-tubulin gene 

sequences, that these sequences form a monophyletic group with their orthologous sequences 

retrieved from the genome of a different A. quadrilineatus strain (strain CBS 853.96; 

https://www.ncbi.nlm.nih.gov/sra/SRX5010607), and that the A. quadrilineatus sequences form 

a sister group with one of the two sets of the A. latus sequences (Fig. 40A).  

 

In the second set of analyses, we estimated the sequence divergence of each gene in the genomes 

of the 7 clinical isolates as well as of A. latus NRRL 200T and A. quadrilineatus NRRL 201T 

from A. spinulosporus NRRL 2395T. Under this analysis, the genomes of non-hybrids are 
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expected to show a unimodal distribution (e.g., see control non-hybrid, A. fumigatus; Fig. 40Bi 

left), whereas the genomes of hybrids are expected to show a bimodal distribution whose two 

modes correspond to the distributions of gene sequence divergence values from each parental 

genome (e.g., see control hybrid, Zygosaccharomyces parabailii; Fig. 40Bi right). We found that 

the haploid A. spinulosporus 4060 clinical isolate and A. quadrilineatus NRRL 201T had 

unimodal distributions reflecting a history devoid of hybridization while the 6 diploid clinical 

isolates and A. latus NRRL 200T had bimodal distributions consistent with allodiploidy (Fig. 

40Bii). Furthermore, all 6 diploid isolates and A. latus NRRL 200T contained nearly equal 

percentages of A. spinulosporus and A. quadrilineatus-like genes (51.43 ± 0.74% A. 

spinulosporus : 48.57 ± 0.74% A. quadrilineatus-like; Fig. 40B, pie charts), including nearly the 

full sets of A. spinulosporus and A. quadrilineatus-like secondary metabolic gene clusters (File 

S2 from Steenwyk et al., 2020c; figshare: 10.6084/m9.figshare.8114114). Putative homeologs 

exhibited an average nucleotide sequence divergence of 7.15 ± 0.03%, a value very similar to the 

average divergence of 7.14% observed between the 8,523 orthologs of A. spinulosporus NRRL 

2395T and A. quadrilineatus NRRL 201T (Fig. S3 from Steenwyk et al., 2020c). These two sets 

of analyses confirm that the 6 diploid clinical isolates belong to A. latus, and that A. latus is an 

allodiploid hybrid species that originated via interspecific hybridization between A. 

spinulosporus and a species closely related to A. quadrilineatus. 

 

We next assessed whether the allodiploid hybrid species A. latus stems from a single 

hybridization event by comparing the genome-scale phylogenies constructed from the A. 

spinulosporus and the A. quadrilineatus-like parental genomes of the A. latus isolates (Fig. S4 

from Steenwyk et al., 2020c). We found that the relationships of the A. latus isolates differed 
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between the two phylogenies (Fig. S4 from Steenwyk et al., 2020c). This incongruence may stem 

from biological reasons (e.g., multiple hybridization events or recombination between the two 

parental genomes). However, the low level of support for relationships among isolates, 

especially in the phylogeny from the A. spinulosporus parental genome (Fig. S4A from 

Steenwyk et al., 2020c), means that we cannot exclude the possibility that the two phylogenies 

are not statistically significantly different. To test this, we evaluated whether the two topologies 

were statistically different using the approximately unbiased topology constraint test 

(Shimodaira, 2002). Using the A. spinulosporus data matrix, we found that we could not reject 

the topology inferred based on the A. quadrilineatus-like data matrix as statistically inferior; 

similarly, we could not reject the A. spinulosporus topology when we using the A. 

quadrilineatus-like data matrix (p-value = 0.50 for both tests). These results are consistent with 

the hypothesis that the two parental genomes of A. latus share the same evolutionary history. 

 

To provide more insight on whether the two parental genomes A. latus hybrids undergo 

recombination, we first examined whether A. latus hybrids undergo the sexual cycle to produce 

sexual spores (ascospores). We found that all A. latus hybrids produce sexual spores and that the 

viability of these spores is similar to that of the sexual spores of their parental species (Fig. S5 

from Steenwyk et al., 2020c). We next examined if any contigs in the genomes of A. latus 

isolates had evidence of recombination events. Examination of long (≥ 100 kb) contigs revealed 

that most genes in most contigs contained genes from one or the other parent and that very few 

contigs contained substantial percentages of genes from both parents (Fig. S6 from Steenwyk et 

al., 2020c). For example, only an average of 2.67 ± 0.71% contigs per A. latus hybrid genome 

contained substantial percentages of genes from both parental species (Fig. S6 from Steenwyk et 
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al., 2020c). However, interpretation of these data is challenging for two reasons. First, the high 

sequence similarity of the two parental genomes means that identification of parent of origin for 

highly-conserved genes is difficult and likely explains the sporadic presence of one or a handful 

of genes from one parent in contigs comprised mostly of genes from the other parent. Second, 

alignment of several of the contigs that contain large numbers of genes from both parents to the 

A. nidulans A4 reference genome suggests that they are often patchworks of A. nidulans contigs; 

for example, a long stretch of an A. latus contig that matches one parent is homologous to A. 

nidulans chromosome 5 and the rest of the contig, which matches the other parent, is 

homologous to A. nidulans chromosome 7. The absence of A. latus contigs that contain genes 

from both parental species and map to a single A. nidulans chromosome suggests that A. latus 

contigs that contain genes from both parental species may stem from assembly artifacts. These 

results suggest that A. latus hybrids likely undergo little to no recombination between the two 

parental genomes.  

 

The genomes of the A. latus allodiploid hybrid isolates are stable 

To assess the genome stability of the A. latus isolates, we begun by examining the gene content 

completeness of each parental genome. We found that each parental genome contained nearly all 

of the 1,315 near-universally single-copy orthologous (BUSCO) genes from the fungal phylum 

Ascomycota (93.50 ± 1.88% A. spinulosporus and 94.30 ± 0.40% A. quadrilineatus-like) (Fig. 

S7 from Steenwyk et al., 2020c). Considering that gene content completeness from each parent is 

only slightly below that from haploid representative species (average = 96.33 ± 0.78%; min = 

95.70%, A. spinulosporus; max = 97.3%, A. nidulans A4), these results suggest little loss of each 

parental genome by either aneuploidy or loss of heterozygosity events.  
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To further test this observation genome-wide, we examined the fraction of orthologous genes 

shared between the A. spinulosporus NRRL 2395T strain and the parental genomes of A. latus 

isolates that stem from A. spinulosporus. We found that the A. spinulosporus parental genomes 

from A. latus hybrids shared a minimum of 9,227 / 9,611 orthologous genes with A. 

spinulosporus NRRL 2395T; the sole exception was A. latus NRRL 200T, which shared 8,749 

orthologs (figshare: 10.6084/m9.figshare.8114114). Interestingly, the A. spinulosporus parental 

genome of A. latus NRRL 200T shows by far the highest evolutionary rate in our phylogenomic 

analyses (Fig. S4 from Steenwyk et al., 2020c), suggesting that the A. spinulosporus parental 

genome of this strain may be more genetically unstable than those of the clinical isolates.  

 

Examination of loss of heterozygosity and aneuploidy events in A. latus genomes revealed 

relatively little evidence for either. Two isolates contained loss of heterozygosity regions. The A. 

latus NRRL 200T strain contained a ~1.2 Mb region homologous to the end of A. nidulans 

chromosome VIII that contained two copies of the A. quadrilineatus-like parental genome and 

lacked a copy of the A. spinulosporus genome. This region contains several BUSCO genes, 

which explains why this strain has a higher proportion of missing BUSCO genes from the A. 

spinulosporus parental genome compared to the 6 clinical isolates (Fig. S7 from Steenwyk et al., 

2020c). The clinical isolate MO46149 contained a ~1 Mb region homologous to the beginning of 

A. nidulans chromosome V with two copies of the A. spinulosporus genome and lacked a copy of 

the A. quadrilineatus-like genome (File S3 from Steenwyk et al., 2020c). We did not find 

evidence for chromosome-scale aneuploidies (File S3 from Steenwyk et al., 2020c).  
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Lastly, by comparing the gene lengths of homeolog pairs as a signature of pseudogenization, we 

found evidence of pseudogenization in at least one gene among an average of 11.67 ± 0.004% 

homeologs (Fig. S3 from Steenwyk et al., 2020c). These results suggest that the genomes of the 

A. latus allodiploid hybrids are generally stable, that loss of heterozygosity is rare, that major 

aneuploidies have not occurred, and that both genes in ~88% of homeolog pairs are intact. 

 

Hybrids exhibit wide variation for infection-relevant traits 

To examine variation in infection-relevant traits between the hybrid isolates, one of their known 

parental species (A. spinulosporus), the closest known relative of their other parental species (A. 

quadrilineatus), and the species they were originally identified as (A. nidulans), we tested the 

virulence of all isolates in an invertebrate disease model and phenotypically characterized them 

across a wide variety of infection-relevant conditions, including interactions with host immune 

cells, drug susceptibility, oxidative stress, iron starvation, and temperature stress (Fig. 41 and S8 

from Steenwyk et al., 2020c). Principal component analysis (PCA) and examination of the traits 

with the greatest contributions to the observed variance among isolates revealed two major 

findings. First, the 7 A. latus hybrids exhibit substantial heterogeneity in their phenotypic profiles 

(Fig. 41A). Second, the A. latus hybrids are phenotypically distinct from A. nidulans and their 

parental species but are more similar to A. spinulosporus than to A. quadrilineatus (Fig. 41A). 

Among the traits tested, those with the largest contributions to the observed variation among 

isolates and species were interactions with host immune cells, antifungal drug susceptibility, and 

oxidative stress resistance (Fig. 41A and S9 from Steenwyk et al., 2020c). Here, we discuss 

exemplary phenotypic traits that highlight these two major findings (see Fig. S8 from Steenwyk 

et al., 2020c for other phenotypes). 
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Figure 41. A. latus Hybrids Exhibit Strain Heterogeneity and Differ from Parental 

Species, A. quadrilineatus, and A. nidulans in Infection-Relevant Phenotypes 

(A) Principal-component analysis of diverse infection-relevant phenotypes reveals strain 

heterogeneity among A. latus hybrids and that they differ from the closest relative of the 

unknown parent, A. quadrilineatus, and the A. nidulans A4 strain. Data for each phenotype were 

scaled prior to principal-component analysis. (B and C) Wide phenotypic variation among strains 

of A. latus hybrids as well as among the various species tested was observed for virulence in 

the Galleria moth model of disease (B) and for stimulation of NETosis, a process where 

neutrophils release neutrophil extracellular traps, or NETs, to kill microbes (C). (D) Examination 

of the percentage of hyphal viability between the various species revealed significant differences 

(F(3) = 24.514; p < 0.001; multi-factor ANOVA). (E) Examination of the caspofungin drug 

susceptibility profiles among A. nidulans, A. spinulosporus, and the A. latus revealed differences 
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between the three species (F(3) = 56.01; p < 0.001; multi-factor ANOVA). At 1 μg/mL 

caspofungin treatment, A. spinulosporus and A. latus hybrids grew more 

than A. nidulans and A. quadrilineatus (p < 0.001 for both comparisons; Tukey honest significant 

differences test). We found no statistically significant differences between the various species at 

8 μg/mL of caspofungin but observed a qualitative difference similar to growth in 1 μg/mL of 

caspofungin. (F) Examination of growth in the presence of the oxidative stress agent paraquat 

revealed differences among the various species (F(3) = 30.25; p < 0.001; multi-factor ANOVA). 

Dark gray represents A. nidulans; red represents A. quadrilineatus; blue 

represents A. spinulosporus; and purple represents A. latus. All pairwise comparisons shown by 

brackets were examined using a Tukey honest significant differences test. ∗0.01 ≤ p ≤ 

0.05; ∗∗0.001 ≤ p ≤ 0.01; ∗∗∗p ≤ 0.001. Barplots are displayed with error bars that correspond to 

one standard deviation from the mean. 

 

 

Phenotypic variation or strain heterogeneity among A. latus hybrids was observed for nearly 

every trait measured (Fig. 41 and S8 from Steenwyk et al., 2020c). For example, examination of 

virulence in the invertebrate greater wax moth (Galleria mellonella) model revealed substantial 

variation among isolates (p < 0.001; log-rank test; Fig. 41B). Specifically, we observed that A. 

latus isolate ASFU1710 was the most virulent and A. latus isolate MO46149 was the least 

virulent. Similarly, we found substantial strain heterogeneity in how much lytic and non-lytic 

NETosis (a process where neutrophils release neutrophil extracellular traps, or NETs, to kill 

microbes; (Branzk et al., 2014)) was stimulated by A. latus hybrid isolates (Fig. 41C). For 

example, A. latus NIH did not substantially stimulate NETosis while A. latus ASFU1710 did. 

Strain heterogeneity was less pronounced for other traits, such as hyphal viability, drug 

susceptibility, and oxidative stress, yet all exhibited variation across isolates (Fig. 41D, E, and 

F). One A. latus isolate that was consistently different from the rest is MO46149; for example, 

this isolate was twice as susceptible to hyphal killing by neutrophils compared to the other A. 

latus isolates, it was the isolate most sensitive to the antifungal caspofungin, as well as the isolate 

most tolerant to the oxidative stressor paraquat.  
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Phenotypic variation was also pronounced when we compared infection-relevant traits between 

A. latus, its two parental species, and A. nidulans (Fig. 41A). For example, we found that A. latus 

hybrids (and A. quadrilineatus) were less susceptible to killing by neutrophils compared to A. 

spinulosporus (Fig. 41D). In contrast, we found A. latus isolates (and A. spinulosporus) differed 

in their susceptibility to low doses of caspofungin (Fig. 41E) or to high doses of oxidative stress 

(Fig. 41F) from A. quadrilineatus and A. nidulans. 

 

In summary, we found substantial heterogeneity among A. latus hybrid isolates as well as 

between A. latus and closely related or parental species for diverse infection-relevant traits. 

Generally, A. latus hybrids are more similar to their known parent, A. spinulosporus, compared 

to the closest known relative of their other parent, A. quadrilineatus. Importantly, A. latus 

hybrids are also phenotypically distinct from A. nidulans, the species they were originally 

misdiagnosed as.  

 

Discussion 

Infections by filamentous fungal pathogens affect hundreds of thousands of humans and exhibit 

very high mortality rates (Brown et al., 2012), so understanding the evolutionary mechanisms 

underlying their pathogenicity is of great interest. We have discovered several clinical isolates 

previously identified as A. nidulans, an important pathogen of CGD patients, which in reality are 

allodiploid hybrids that arose via interspecific hybridization between A. spinulosporus and a 

close relative of A. quadrilineatus and belong to A. latus. In line with clinical misidentification of 

these species, A. nidulans, A. spinulosporus, A. quadrilineatus, and A. latus are known to be 
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nearly indistinguishable with the exception of aspects of their ascospore micromorphology and 

their secondary metabolic profiles (Chen et al., 2016). The allodiploid hybrids show strain 

heterogeneity in their phenotypic profiles and differ from their parental species and A. nidulans 

with respect to several infection-relevant traits. Below, we discuss the implications of these 

results for disease management and the evolution of fungal pathogenicity. 

 

Application of molecular typing, and more recently genomic, approaches to delineate fungal 

species and pathogens has revealed the existence of multiple, closely related species that are 

morphologically indistinguishable but genomically distinct from each other (Taylor et al., 2000). 

This “hidden” or “cryptic” genomic diversity is found in species from many genera that harbor 

major fungal pathogens, including Aspergillus (Geiser et al., 1998; Balajee et al., 2005; Pringle 

et al., 2005). Alarmingly, application of molecular methods on fungal clinical isolates has too 

begun to reveal that a significant portion of fungal infections are caused by these cryptic species. 

In the case of Aspergillus, studies in both the USA and Spain report that 10 to 15% of 

aspergillosis infections stem from cryptic species (Alastruey-Izquierdo et al., 2014; Perlin et al., 

2017). Understanding the biology of these cryptic species is essential for guidance in therapy, as 

many show high levels of antifungal drug resistance (Alastruey-Izquierdo et al., 2014; Verweij et 

al., 2015; Perlin et al., 2017). Several A. fumigatus-related cryptic species exhibit decreased 

susceptibility (relative to A. fumigatus) to antifungal drugs (Van Der Linden et al., 2011); 

similarly, we found notable differences in certain phenotypic traits, including drug susceptibility, 

between the allodiploid hybrids and A. nidulans (Figs. 41E and S8 from Steenwyk et al., 2020c).  
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A growing body of literature suggests that phenotypic heterogeneity among isolates of the same 

species is an under-appreciated factor in understanding fungal pathogenicity (Keller, 2017). For 

example, several recent studies have identified phenotypic and genomic differences between A. 

fumigatus strains that are associated with virulence (Kowalski et al., 2016, 2019; Ries et al., 

2019); strain heterogeneity is also observed among A. nidulans strains (Bastos et al., 2020a). In 

line with these studies, our work reveals considerable heterogeneity in infection-relevant traits 

among A. latus hybrids (Fig. 3 and S8), further highlighting the importance of strain 

heterogeneity in understanding Aspergillus pathogenicity (Keller, 2017).  

 

Allopolyploid hybrids typically have unstable genomes (Mixão and Gabaldón, 2018). 

Evolutionary paths to achieve stability after hybridization include whole-genome duplication, 

total or partial chromosome loss, gene loss, and loss of heterozygosity (Mixão and Gabaldón, 

2018). For example, an ancient allodiploid hybridization event in the budding yeast lineage that 

includes the baker’s yeast Saccharomyces cerevisiae (Marcet-Houben and Gabaldón, 2015) was 

quickly followed by rapid gene loss in the parental genomes (Scannell et al., 2007), with 

estimates suggesting that 10% of genes were lost in the first 10 million years following 

hybridization (Scannell et al., 2007). Similar rates of gene loss have been reported in plants 

(Bowers et al., 2003; Paterson et al., 2004) and animals (Brunet et al., 2006), suggesting that 

rapid gene loss is a common outcome of hybridization. In contrast to these studies, we found that 

most A. latus hybrids (with the possible exception of A. latus NRRL 200T) contain both copies of 

most homeolog gene pairs and have relatively stable genomes (Fig. S3 from Steenwyk et al., 

2020c and S6 from Steenwyk et al., 2020c). Consistent with our genomic analyses, A. latus 

isolates exhibit minimal sectoring when grown in culture (Fig. S1 from Steenwyk et al., 2020c) 
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and have similar ascospore viability compared to their closest relatives, A. spinulosporus and A. 

quadrilineatus (Fig. S5 from Steenwyk et al., 2020c). Furthermore, laboratory studies that have 

created synthetic Aspergillus hybrids—including those that created interspecies hybrids from 

distinct species in section Nidulantes—reported that some of these hybrids are relatively stable 

(Kevei and Peberdy, 1979; Kevei and Perberdy, 1984; Olarte et al., 2015; Macdonald et al., 

2018). Taken together, these results suggest that Aspergillus hybrids may be more stable than 

other hybrid allopolyploids.  

 

Although several examples of interspecies hybridization are known in fungi (Wolfe and Shields, 

1997; Nielsen and Yohalem, 2001; Inderbitzin et al., 2011; Marcet-Houben and Gabaldón, 2015; 

Pryszcz et al., 2015; Wolfe, 2015; Depotter et al., 2016; Schröder et al., 2016; Stukenbrock, 

2016; Rhodes et al., 2017b; Mixão and Gabaldón, 2018), most of them are ancient. 

Consequently, the steps that led to hybrid formation and maintenance are harder to elucidate. As 

the A. latus allodiploid hybrids originated much more recently, and the mechanisms that underlie 

synthetic hybrid formation in Aspergillus have been extensively studied (Kevei and Peberdy, 

1979; Kevei and Perberdy, 1984; Olarte et al., 2015; Macdonald et al., 2018), we can propose a 

model to explain the origin and lifecycle of A. latus (Fig. 42). Under our model, the first step in 

the formation of the A. latus allodiploid hybrid was the cellular fusion (or plasmogamy) of an A. 

spinulosporus parental isolate and an A. quadrilineatus-like parental isolate through a parasexual 

or a sexual cycle. In the next step, the distinct nuclei contributed by the two parental isolates 

underwent nuclear fusion (or karyogamy) to create a single nucleus with a diploid genome 

comprised from the A. spinulosporus and A. quadrilineatus-like genomes. Once formed, the 

allodiploid hybrid species A. latus has been capable of undergoing both asexual and sexual 
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reproduction and forms viable asexual spores (conidia; Fig. 39) and sexual spores (ascospores; 

Fig. S5). 

 

 
Figure 42. Proposed Model for the Evolution of A. latus via Allodiploid Hybridization 

Under the model, haploid nuclei of an A. spinulosporus isolate and of an isolate from an A.-

spinulosporus-like species underwent cellular fusion (plasmogamy), forming a heterokaryotic 

mycelium (i.e., a mycelium where cells contain two distinct nuclei). Next, nuclear fusion 

(karyogamy) resulted in the merging of the two genetically distinct nuclei and their genomes into 
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a single one, giving rise to the allodiploid species A. latus, which is capable of undergoing 

asexual and sexual reproduction to produce asexual spores (conidia) or sexual spores 

(ascospores). 

 
 

Hybrids have been observed in several fungal pathogens of animals and plants (Pryszcz et al., 

2015; Depotter et al., 2016; Rhodes et al., 2017b; Mixão and Gabaldón, 2018), suggesting that 

hybridization of pathogenic fungi poses threats to plant and animal health. Hybridization can 

result in the acquisition of new traits, such as host expansion or increased virulence. For 

example, two powdery mildew species that specialize in infecting different species of plants have 

been shown to hybridize and infect a plant species that neither parent can (Menardo et al., 2016). 

Similarly, hybridization is thought to contribute to virulence among human yeast pathogens but 

clear examples are currently lacking (Mixão and Gabaldón, 2018). To our knowledge, our results 

are the first report of hybrid clinical isolates in a filamentous fungal pathogen of humans (Fig. 

40). Like previous studies, we observe that the hybrids exhibit infection-relevant traits that 

differentiate them from their parental relatives and may provide a fitness advantage inside human 

hosts (Fig. 41). However, it should be noted that the potential selection pressure for hybrids in 

patients is unknown; although we isolated the hybrids from patients with diverse pulmonary 

diseases, we do not know if the hybrids’ primary lifestyle is that of a pathogen or whether they 

originated inside a host. Importantly, the type strain of A. latus (NRRL 200T) is not a clinical 

isolate, suggesting that the species is also found in the environment. More broadly, the existence 

of hybrids in a diverse set of pathogenic fungi infecting a diverse set of animal and plant hosts 

raise the hypothesis that allodiploid hybridization contributes to the evolution and diversity of all 

kinds of fungal pathogens, perhaps to a greater extent than currently realized. 
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In summary, viewed from a medical mycology perspective, our discovery of allodiploid hybrid 

clinical isolates reveals the importance of accurate isolate identification and strain heterogeneity. 

Viewed from an evolutionary perspective, our and previous results suggest that hybridization 

contributes to the genomic and phenotypic diversification of filamentous fungal pathogens of 

humans and argue that hybridization represents a general mechanism that can be potentially 

employed by all fungal pathogens to adapt to all kinds of hosts. 
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CHAPTER 10 

BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data9 

 

Introduction 

Bioinformatics is the application of computational tools to process and analyze biological data, 

such as nucleotide or amino acid sequences in the form of genome assemblies, gene annotations, 

and multiple sequence alignments (Bayat, 2002). Diverse disciplines in the biological sciences 

rely on bioinformatic methods and software (Wren, 2016). Recently, researchers have 

acknowledged the need to consider diverse types of biological scientists with different levels of 

experience when developing software (Kumar and Dudley, 2007). It is also essential to 

implement high standards of software development that ensure software functionality and 

archival stability (Mangul et al., 2019b, 2019a). For example, code quality can be improved by 

utilizing unit and integration tests, which ensure faithful function of code (Darriba et al., 2018). 

As a result, the development of effective and user-friendly software for diverse biologists often 

requires an interdisciplinary team of software engineers, biologists, and others. 

 

Even though numerous bioinformatic pieces of software are available, there are still several 

barriers to creating seamless and reproducible workflows (Kim et al., 2018). This issue in part 

stems from different pieces of software requiring different input file formats, being unable to 

account for non-standard biological phenomena such as the use of alternative genetic codes, or  

 

9This work is published in: Steenwyk, J. L., Buida, T. J., Gonçalves, C., Goltz, D. C., Morales, 

G., Mead, M. E., et al. (2021). BioKIT: a versatile toolkit for processing and analyzing diverse 

types of sequence data. bioRxiv, 2021.10.02.462868. doi:10.1101/2021.10.02.462868. 
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can only be executed using web servers or graphical user interfaces, which cannot be 

incorporated into high-throughput pipelines. Another factor is that multiple pieces of software or 

custom scripts are typically needed to execute different steps in a larger bioinformatic pipeline; 

for example, bioinformatic workflows often rely on one software/script for converting file 

formats, another software/script for translating sequences using standard and non-standard 

genetic codes, another software/script to examine the properties of genomes or multiple sequence 

alignments, and so on. As a result, maintaining efficacious bioinformatic workflows is 

cumbersome (Kulkarni et al., 2018). Thus, the bioinformatic community would benefit from a 

multi-purpose toolkit that contains diverse processing and analysis functions. 

 

To address this need, we—an interdisciplinary team of software engineers, evolutionary 

biologists, molecular biologists, microbiologists, and others—developed BioKIT, a versatile 

toolkit with 40 functions, several of which were community sourced, that conduct routine and 

novel processing and analysis of diverse sequence files including genome assemblies, multiple 

sequence alignments, protein coding sequences, and sequencing data (Table 1 from Steenwyk et 

al., 2020c). Functions implemented in BioKIT facilitate a wide variety of standard bioinformatic 

analyses, including genome assembly quality assessment (e.g., N50, L50, assembly size, 

guanine-cytosine (GC) content, number of scaffolds, and others), the calculation of multiple 

sequence alignment properties (i.e., number of taxa, alignment length, the number of constant 

sites, the number of parsimony-informative sites, and the number of variable sites), and 

processing and analysis of protein coding sequences (e.g., translation using 26 genetic codes 

including user-specified translation tables, GC content at the first, second, and third codon 

positions, and relative synonymous codon usage). To demonstrate the utility of BioKIT, we 
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examined the genome assembly quality of 901 eukaryotic genomes, evaluated the properties of 

10 phylogenomic data matrices, calculated relative synonymous codon usage in 171 fungal 

genomes, and estimated codon optimization in each gene from two Saccharomyces budding 

yeast species using a novel metric, gene-wise relative synonymous codon usage (gw-RSCU). 

BioKIT comes complete with common and novel functions that will help improve 

reproducibility and accessibility of diverse bioinformatic analysis and facilitate discovery in the 

biological sciences. 

 

Materials and Methods 

BioKIT is an easy-to-install command-line software that conducts diverse bioinformatic analyses 

in the UNIX programming environment. BioKIT is written in the Python programming language 

and has few dependencies, namely Biopython (Cock et al., 2009a) and numPy (Van Der Walt et 

al., 2011). 

 

BioKIT currently has 40 functions that process and analyze sequence files such as genome 

assemblies, multiple-sequence alignments, protein coding sequences, and sequencing data (Table 

1 from Steenwyk et al., 2020c). Processing functions include those that convert various file 

formats, subset sequence reads from FASTQ files, rename entries in FASTA files, and others. 

Analysis functions include those that trim sequence reads in FASTQ files according to quality 

and length thresholds, calculate relative synonymous codon usage, estimate codon optimization, 

and others. Similar to other software we have developed (Steenwyk et al., 2020b, 2021b; 

Steenwyk and Rokas, 2021b), we plan on continuing to develop and incorporate additional 

functions into BioKIT to meet the needs of the research community. 
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Details about each function, their usage, tutorials, and other information such as how to request 

additional functions can be found in the online documentation (https://jlsteenwyk.com/BioKIT). 

To demonstrate the utility of BioKIT, we highlight four use-cases: (i) genome assembly quality 

assessment, (ii) summarizing properties of multiple sequence alignments, (iii) determination of 

relative synonymous codon usage using different genetic codes, and (iv) determination of a novel 

metric for estimation of gene-wise codon optimization, gene-wise relative synonymous codon 

usage (gw-RSCU). 

 

Genome assembly quality assessment 

Determination of genome assembly properties is essential when evaluating assembly quality 

(Gurevich et al., 2013; Hunt et al., 2013). To facilitate these analyses, the 

genome_assembly_metrics function in BioKIT calculates 14 diverse properties of genome 

assemblies that evaluate assembly quality and characteristics including: 

• assembly size: sum length of all contigs/scaffolds; 

• L50 (and L90): the number of contigs/scaffolds that make up 50% (or, in the case of L90, 90%) 

of the total length of the genome assembly; 

• N50 (and N90): the length of the contig/scaffold which, along with all contigs/scaffolds longer 

than or equal to that contig/scaffold, contain 50% (or, in the case of N90, 90%) the length of a 

particular genome assembly; 

• GC content: fraction of total bases that are either G or C; 

• number of scaffolds: total number of contigs/scaffolds; 

https://jlsteenwyk.com/BioKIT
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• number and sum length of large scaffolds: total number and sum length of contigs/scaffolds 

above 500 nucleotides in length (length threshold of a “large scaffold” can be modified by the 

user); and 

• frequency of nucleotides: fraction of occurrences for adenine (A), thymine, (T), G, and C 

nucleotides. 

 

Each metric can also be called using individual functions (e.g., the n50 function calculates the 

N50 of an assembly and the number_of_large_scaffolds function calculates the number of large 

scaffolds in an assembly). We anticipate the ability of BioKIT to summarize genome assembly 

properties will be helpful for assessing genome quality as well as in comparative studies of 

genome properties, such as the evolution of genome size and GC content (Walker et al., 2015; 

Shen et al., 2020b). Other pieces of software that conduct similar analyses include QUAST, 

REAPR, and GenomeQC (Gurevich et al., 2013; Hunt et al., 2013; Manchanda et al., 2020). 

 

Processing and assessing the properties of multiple sequence alignments 

Multiple sequence alignments—the alignment of three or more biological sequences—contain a 

wealth of information. To facilitate easy use and manipulation of multiple sequence alignments, 

BioKIT implements 16 functions that process or analyze alignments including: generating 

consensus sequences; generating a position-specific score matrix (which represents the frequency 

of observing a particular amino acid or nucleotide at a specific position); recoding an alignment 

using different schemes, such as the RY-nucleotide scheme for nucleotide alignments (Woese et 

al., 1991; Phillips et al., 2001) or the Dayhoff-6, S&R-6, and KGB-6 schemes for amino acid 

alignments (Embley et al., 2003; Hrdy et al., 2004; Kosiol et al., 2004; Susko and Roger, 2007); 
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converting alignments among the following formats: FASTA, Clustal, MAF, Mauve, PHYLIP, 

PHYLIP-sequential, PHYLIP-relaxed, and Stockholm; extracting entries in FASTA files; 

removing entries from FASTA file; removing short sequences from a FASTA file; and others. 

We highlight the alignment_summary function, which calculates numerous summary statistics 

for a multiple sequence alignment, a common step in many molecular evolutionary analyses 

(Plomion et al., 2018; Winterton et al., 2018). More specifically, the alignment_summary 

function calculates: 

• alignment length: the total number of sites in an alignment; 

• number of taxa: the total number of sequences in an alignment; 

• number of parsimony-informative sites: a site in an alignment with at least two distinct 

nucleotides or amino acids that each occur at least twice; 

• number of variable sites: a site in an alignment with at least two distinct nucleotides or amino 

acids; 

• number of constant sites: sites with the same nucleotide or amino acid (excluding gaps); and 

• the frequency of all character states: the fraction of occurrence for all nucleotides or amino acids 

(including gap characters represented as ‘-’ or ‘?’ in an alignment. 

 

Like the genome_assembly_metrics function, each metric can be calculated individually (e.g., the 

constant_sites function calculates the number of constant sites in an alignment and the 

character_frequency function calculates the frequency of all character states). We anticipate the 

alignment_summary function will assist researchers in statistically evaluating the properties of 

their alignments. Other pieces of software that perform similar operations include AMAS 

(Borowiec, 2016) and Mesquite (Mesquite Project Team, 2014). 
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Examining features of coding sequences including relative synonymous codon usage 

BioKIT contains multiple functions that process or analyze protein coding sequences including 

translating protein coding sequences into amino acids using one of 26 genetic codes or a user-

specified translation table as well as determining the GC content at the first, second, and third 

codon positions.  

 

Here, we highlight the relative_synonymous_codon_usage function, which calculates relative 

synonymous codon usage, the ratio of the observed frequency of synonymous codons to an 

expected frequency in which all synonymous codons are used equally (Xu et al., 2008). In this 

analysis, overrepresented codons have relative synonymous codon usage values greater than one 

whereas underrepresented codons have relative synonymous codon usage values less than one. 

Relative synonymous codon usage values of one fit the neutral expectation. The 

relative_synonymous_codon_usage function can be used with one of 26 genetic codes including 

user-specified translation tables. The ability of BioKIT to account for diverse genetic codes 

makes it uniquely suitable for analyses of lineages that contain multiple genetic codes 

(Krassowski et al., 2018; LaBella et al., 2019). Other software that conduct similar analyses 

include DAMBE and GCUA (McInerney, 1998; Xia, 2013).  

 

We also highlight the gene_wise_relative_synonymous_codon_usage function, which calculates 

a novel metric, gw-RSCU, to examine biases in codon usage among individual genes encoded in 

a genome. More specifically, the gw-RSCU is calculated by determining the mean or median 

relative synonymous codon usage value for all codons in each gene based on their genome-wide 
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values. Thus, BioKIT calculates relative synonymous codon usage for each codon based on 

codon usage in an entire set of protein coding genes, individually reexamines each gene and the 

relative synonymous codon usage value for each codon therein, and then determines the mean or 

median relative synonymous codon usage value for the individual gene. The formula for the 

mean gw-RSCU calculation is as follows: 

𝑔𝑤– 𝑅𝑆𝐶𝑈𝑎 =  
∑ 𝑅𝑆𝐶𝑈𝑖

𝑗
𝑖=1

𝑛
  

where gw-RSCUa is the gene that gw-RSCU is being calculated for, RSCUi is the relative 

synonmyouse codon usage value (calculated from all protein coding genes in a genome) for the 

ith codon of j codons in a gene, and n is the number of codons in a gene. To evaluate within-gene 

variation in relative synonymous codon usage, BioKIT also reports the standard deviation of 

relative synonymous codon usage values for each gene. Like the 

relative_synonymous_codon_usage function, gw-RSCU can be calculated using alternative 

genetic codes including user-specified ones. Taken together, these functions can be used 

individually or in tandem to investigate diverse biological phenomena, including codon usage 

bias (Brandis and Hughes, 2016; LaBella et al., 2019). 

 

Implementing high standards of software development 

Archival instability is a concern for bioinformatic tools and threatens the reproducibility of 

bioinformatic research. For example, in an analysis that aimed to evaluate the “installability” of 

bioinformatic software, 28% of over 36,000 bioinformatic tools failed to properly install due to 

implementation errors (Mangul et al., 2019b). To ensure archival stability of BioKIT, we 

implemented a previously established protocol (Steenwyk et al., 2020b, 2021b; Steenwyk and 

Rokas, 2021b) for high standards of software development and design practices. More 
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specifically, we wrote 327 unit and integration tests that ensure faithful functionality of BioKIT 

and span 95.46% of the codebase. We also implemented a continuous integration pipeline, which 

builds, packages, installs, and tests the functionality of BioKIT across Python versions 3.6, 3.7, 

3.8, and 3.9. To accommodate diverse installation workflows, we also made BioKIT freely 

available under the MIT license across popular platforms including GitHub 

(https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and 

the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). To make BioKIT more 

user-friendly, we wrote online documentation, user tutorials, and instructions for requesting new 

features (https://jlsteenwyk.com/BioKIT). We anticipate our rigorous strategy to implement high 

standards of software development, coupled to our approach to facilitate easy software 

installation and extensive documentation, will address instabilities observed among many 

bioinformatic software and increase the long-term usability of BioKIT. 

 

Results 

Genome assembly quality and characteristics among 901 eukaryotic genomes 

To demonstrate the utility of BioKIT for the examination of genome assembly quality and 

characteristics, 14 diverse genome assembly metrics were determined among 901 scaffold-level 

haploid assemblies of eukaryotic genomes, which were obtained from NCBI, and span three 

major classes of animals (Mammalia; N = 350), plants (Magnoliopsida; N = 336), and fungi 

(Eurotiomycetes; N = 215). Genome assembly properties exhibited variation both within and 

between the three classes (Figure 43). For example, fungi had the smallest average genome size 

of 32.71 ± 7.04 Megabases (Mbs) whereas mammals had the largest average genome size of 

2,645.50 ± 487.48 Mbs. Extensive variation in genome size within each class corroborates  

https://github.com/JLSteenwyk/BioKIT
https://pypi.org/project/jlsteenwyk-biokit/
https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit
https://jlsteenwyk.com/BioKIT
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Fig. 43. Summary of genome assembly metrics across 901 genomes from three eukaryotic 

classes. 

Nine hundred and one scaffold-level genome assemblies from three major eukaryotic classes 

(215 Eurotiomycetes (kingdom: Fungi), 336 Magnoliopsida (kingdom: Plantae), 350 Mammalia 

(kingdom: Animalia)) were obtained from NCBI and examined for diverse metrics including 

assembly size, GC content, frequency of A, T, C, and G, N50, N90, L50, L90, number of 

scaffolds, number of large scaffolds (defined as being greater than 500 nucleotides, which can be 

modified by the user), sum length of large scaffolds, and longest scaffold in the assembly. Bar 

plots represent the mean for each taxonomic class. Error bars represent the standard deviation of 

values.  
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previous findings of extreme genome size variation among eukaryotes (Elliott and Gregory, 

2015). Variation in GC content, a genome property that has been actively investigated for 

decades (Galtier et al., 2001; Romiguier et al., 2010; Serres-Giardi et al., 2012), was observed 

among the three eukaryotic classes—animals, plants, and fungi had an average GC content of 

0.40 ± 0.04, 0.35 ± 0.04, and 0.49 ± 0.03, respectively. Lastly, there was wide variation in 

genome assembly metrics associated with continuity of assembly. For example, the average N50 

values for animals, plants, and fungi were 12,287.64 ± 25,317.31 Mbs, 5,030.15 ± 19,358.58 

Mbs, and 1,370.77 ± 1,552.13 Mbs, respectively. Taken together, these results demonstrate 

BioKIT can assist researchers in summarizing diverse genome assembly properties, which may 

be helpful not only for evaluating genome assembly quality, but also for studying genome 

evolution. 

 

Properties of multiple sequence alignment from 10 phylogenomic studies 

To demonstrate the utility of BioKIT in calculating summary statistics for multiple sequence 

alignments, we calculated six properties across 10 previously published phylogenomic data 

matrices of amino acid sequences (Misof et al., 2014; Nagy et al., 2014; Borowiec et al., 2015; 

Chen et al., 2015; Struck et al., 2015; Whelan et al., 2015; Yang et al., 2015; Shen et al., 2016b, 

2018; Steenwyk et al., 2019c) (Figure 44). Phylogenomic data matrices varied in the number of 

taxa (mean = 109.50 ± 87.26; median = 94; max = 343; min = 36). Alignment length is 

associated with greater phylogenetic accuracy and bipartition support (Shen et al., 2016a); 

however, recent analyses suggest that in some instances shorter alignments that contain a wealth 

of informative sites (such as parsimony-informative sites) harbor robust phylogenetic signal 

(Steenwyk et al., 2020b). Interestingly, the longest observed alignment (1,806,035 sites; Chen, 
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Vertebrates in Figure 2) (Chen et al., 2015) contained the highest number of constant sites (N = 

610,994), which are phylogenetically uninformative, as well as the highest number of variable 

sites (N = 1,195,041), which are phylogenetically informative (Shen et al., 2016a). In contrast to 

 

 
Fig. 44. Summary metrics among multiple sequence alignments from phylogenomic studies. 

Multiple sequence alignments of amino acid sequences from ten phylogenomic data matrices 

(Borowiec et al., 2015; Chen et al., 2015; Misof et al., 2014; Nagy et al., 2014; Shen et al., 2018; 

X.-X. Shen, Zhou, et al., 2016; Steenwyk et al., 2019; Struck et al., 2015; Whelan et al., 2015; 

Yang et al., 2015) were examined for five metrics: number of taxa, alignment length, number of 

constant sites, number of parsimony-informative sites, and number of variable sites. The x-axis 

depicts the last name of the first author of the phylogenomic study followed by a description of 

the organisms that were under study. The abbreviation PI represents parsimony-informative sites. 

Although excluded here for simplicity and clarity, BioKIT also determines character state 

frequency (nucleotide or amino acid) when summarizing alignment metrics. 

 
 the multiple sequence alignment of vertebrate sequences, the second longest alignment of 

budding yeast sequences (1,162,805 sites; Shen, 332 Yeast in Figure 44) has few constant sites 

(N = 2,761) and many parsimony-informative (N = 1,152,145) and variable sites (N = 

1,160,044). This observation may be driven in part by the rapid rate of budding yeast evolution 

compared to animals (Shen et al., 2018). These results demonstrate BioKIT is useful in 

summarizing multiple sequence alignments. 
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Relative synonymous codon usage in 107 budding yeast and filamentous fungi 

To demonstrate the utility of BioKIT in analyzing protein coding sequences, we calculated the 

relative synonymous codon usage of all codons in the protein coding sequences of 103 

Eurotiomycetes (filamentous fungi) and 68 Saccharomycetes (budding yeasts) genomes obtained 

from the RefSeq database of NCBI (Figure 45). This example also demonstrates the flexibility of  

 

Fig. 45. Relative synonymous codon usage across 171 fungal genomes. 

Relative synonymous codon usage (RSCU) was calculated from the coding sequences of 103 

Eurotiomycetes (filamentous fungi) and 68 Saccharomycetes (budding yeasts) genomes obtained 

from NCBI. Hierarchical clustering was conducted across the fungal species (rows) and codons 

(columns). Eight groups of clustered rows were identified; seven groups of clustered columns 

were identified. Broad differences were observed in the RSCU values of Eurotiomycetes and 

Saccharomycetes genomes. For example, Saccharomycetes tended to have higher RSCU values 

for the AGA codon, whereas Eurotiomycetes tended to have higher RSCU values for the CUG 

codon. To account for the use of an alternative genetic code in budding yeast genomes from the 

CUG-Ser1 and CUG-Ser2 lineages, the alternative yeast nuclear code—which is one of 26 

alternative genetic codes incorporated into BioKIT—was used during RSCU determination. 

User’s may also provide their own genetic code if it is unavailable in BioKIT. Overrepresented 

codons (RSCU>1) are depicted in a gold gradient; underrepresented codons (RSCU<1) are 
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depicted in a blue gradient. RSCU values greater than 2 are depicted with the maximum gold 

color. Eurotiomycetes are depicted in grey; Saccharomycetes are depicted in green. 

 
 

BioKIT to account for non-standard genetic codes, which are observed among some budding 

yeasts that use the CUG codon to encode a serine or alanine rather than a leucine (Krassowski et 

al., 2018). Hierarchical clustering of relative synonymous codon usage values per codon 

(columns in Figure 45) revealed similar patterns across groups of codons. For example, CUA, 

AUA, and GUA—three of the four codons that end in UA—were underrepresented in all fungi. 

Hierarchical clustering of relative synonymous codon usage values per species (rows in Figure 

45) revealed filamentous fungi and budding yeasts often clustered separately. For example, 

UGA, GUG, AAC, UAC, AAG, UUC, UCC, ACC, GCC, CGC, CUG, AUC, GUC, CUC, and 

GGC are more often overrepresented among filamentous fungi in comparison to budding yeasts; 

in contrast, UUG, GUU, CCA, and GGU are more often overrepresented among budding yeasts 

in comparison to filamentous fungi. Variation within each lineage was also observed; for 

example, UUA was underrepresented in most, but not all, budding yeasts. 

 

Patterns of gene-wise codon usage bias can be used to assess codon optimization and 

predict steady-state gene expression levels 

To evaluate the utility of BioKIT in examining gene-wise codon usage biases, we calculated the 

mean and median gw-RSCU value, a novel metric introduced in the present manuscript, for 

individual protein coding genes in the genome of S. cerevisiae (Figure 46A). Mean and median 

gw-RSCU values were often, but not always, similar—the average absolute difference between 

mean and median gw-RSCU is 0.05 ± 0.04. In S. cerevisiae, as well as other organisms, genes 

encoding ribosomal components and histones are known to be codon optimized and highly  
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Fig. 46. Mean gene-wise relative synonymous codon usage accurately estimates codon 

optimization. 

(A) Gene-wise relative synonymous codon usage (gw-RSCU), the mean (x-axis) or median (y-

axis) relative synonymous codon usage value per gene (based on RSCU values calculated from 

the entire set of protein coding genes), was calculated from the coding sequences of the model 

budding yeast Saccharomyces cerevisiae. (B, C) In S. cerevisiae, a significant correlation was 

observed between tRNA adaptation index (tAI), a well-known measure of codon optimization, 

and mean as well as median gw-RSCU (r2 = 0.52, p < 0.001 and r2 = 0.25, p < 0.001, 

respectively; Pearson’s Correlation Coefficient). (D) Using previously published data, a 

correlation is observed between median log2 gene expression and tAI in Saccharomyces 

mikatae, which is evidence of tAI values being indicative of codon optimization. Comparison of 

mean and median gw-RSCU (E and F, respectively) and median log2 gene expression revealed 

similarly strong correlations (r2 = 0.57, p < 0.001 and r2 = 0.41, p < 0.001, respectively; 

Pearson’s Correlation Coefficient). Of note, mean gw-RSCU had a strong correlation to gene 

expression than median gw-RSCU. Each gene is represented by a dot. In panel A, the size of 

each dot represents the standard deviation of RSCU values observed in the gene and the color of 

each dot represents if the protein encoded by the gene has functions related to the 60S and 40S 

ribosomal subunits (gold) or a different function (blue). 
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expressed (Sharp et al., 1986; Hershberg and Petrov, 2009; LaBella et al., 2021). Therefore, we 

hypothesized that genes with high gw-RSCU values will have functions related to ribosomes or 

histones because patterns of gene-wise codon usage bias may be indicative of codon 

optimization. Supporting this hypothesis, examination of the 10 genes with the highest mean gw-

RSCU revealed five genes with ribosome-related functions [RPL41B (YDL133C-A), mean gw-

RSCU: 1.60; RPL41A (YDL184C), mean gw-RSCU: 1.58; RPS14A (YCR031C), mean gw-

RSCU: 1.44; RPS9B (YBR189W), mean gw-RSCU: 1.43; and RPL18A (YOL120C), mean gw-

RSCU: 1.43] and four genes with histone-related functions [HHF1 (YBR009C), mean gw-

RSCU: 1.45; HTA2 (YBL003C), mean gw-RSCU: 1.44; HHF2 (YNL030W), mean gw-RSCU: 

1.43; and HTA1 (YDR225W), mean gw-RSCU: 1.43]. Examination of the 10 most optimized 

genes according to median gw-RSCU revealed similar observations wherein nine genes had 

ribosome-related functions [RPS14A (YCR031C), median gw-RSCU: 1.48; RPS12 (YOR369C), 

median gw-RSCU: 1.40; RPS30B (YOR182C), median gw-RSCU: 1.40; RPP2A (YOL039W), 

median gw-RSCU: 1.40; RPL18A (YOL120C), median gw-RSCU; RPS3 (YNL178W), median 

gw-RSCU: 1.40; RPL13B (YMR142C), median gw-RSCU: 1.40; RPP0 (YLR340W), median 

gw-RSCU: 1.40; and RPS0B (YLR048W), median gw-RSCU: 1.40]. More broadly, genes 

associated with the 60S and 40S ribosomal units (gold color in Figure 46A) tended to have high 

gw-RSCU values. These results suggest gw-RSCU values may be useful for estimating codon 

optimization. 

 

To further explore the relationship between gw-RSCU and codon optimization, we compared 

gw-RSCU values to the values of the tRNA adaptation index, a measure of codon optimization 

(Sabi and Tuller, 2014), in S. cerevisiae as well as in steady state gene expression data from 
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Saccharomyces mikatae (LaBella et al., 2019). In S. cerevisiae, strong correlation was observed 

between mean gw-RSCU and tRNA adaptation index values (Figure 46B) and a less robust, but 

still significant, correlation was observed between median gw-RSCU and tRNA adaptation index 

values (Figure 46C). Examination of gw-RSCU and gene expression data from S. mikatae 

revealed a robust correlation (Figure 46E and 46F) suggesting gw-RSCU, and in particular the 

mean gw-RSCU, can serve as a measure of gene-wise codon optimization. 

 

Discussion 

BioKIT is a multi-purpose toolkit that has diverse applications for bioinformatics research. The 

utilities implemented in BioKIT aim to facilitate the execution of seamless bioinformatic 

workflows that handle diverse sequence file types. Implementation of state-of-the-art software 

development and design principles in BioKIT help ensure faithful function and archival stability. 

BioKIT will be helpful for bioinformaticians with varying levels of expertise and biologists from 

diverse disciplines including molecular biology. 
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CHAPTER 11 

PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing 

phylogenomic data10 

 

Introduction 

Multiple sequence alignments (MSAs) and phylogenetic trees are widely used in numerous 

disciplines, including bioinformatics, evolutionary biology, molecular biology, and structural 

biology. As a result, the development of user-friendly software that enables biologists to process 

and analyze MSAs and phylogenetic trees is an active area of research (Kapli et al., 2020).  

 

In recent years, numerous methods have proven useful for diagnosing potential biases and 

inferring biological events in genome-scale phylogenetic (or phylogenomic) datasets. For 

example, methods that evaluate sequence composition biases in MSAs (Phillips and Penny, 

2003), signatures of clock-like evolution in phylogenetic trees (Liu et al., 2017), phylogenetic 

treeness (Lanyon, 1988; Phillips and Penny, 2003), taxa whose long branches may cause 

variation in their placement on phylogenetic trees (Struck, 2014), and others have assisted in 

summarizing the information content in phylogenomic datasets and improved phylogenetic 

inference (Felsenstein, 1978; Philippe et al., 2011; Salichos and Rokas, 2013; Doyle et al., 2015; 

Liu et al., 2017; Smith et al., 2018; Walker et al., 2019).  

 

 

10This work is published in: Steenwyk, J. L., Buida, T. J., Labella, A. L., Li, Y., Shen, X.-X., and 

Rokas, A. (2021). PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing 

phylogenomic data. Bioinformatics. doi:10.1093/bioinformatics/btab096. 
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Other methodological innovations include identifying significant gene-gene covariation of  

evolutionary rates, which has been shown to accurately and sensitively identify genes that have 

shared functions, are co-expressed, and/or are part of the same multimeric complexes (Sato et al., 

2005; Clark et al., 2012). Furthermore, gene-gene covariation serves as a powerful evolution-

based genetic screen for predicting gene function (Brunette et al., 2019). Lastly, a recently 

developed method has enabled the identification of unresolved internal branches or polytomies in 

species trees (Sayyari and Mirarab, 2018; One Thousand Plant Transcriptomes Initiative, 2019); 

such branches can stem from rapid radiation events or from lack of data (Rokas and Carroll, 

2006).  

 

Despite the wealth of information in MSAs and phylogenetic trees, there is a dearth of tools that 

enable researchers to conduct these analyses in a unified framework. For example, to utilize the 

functions mentioned in the previous paragraphs, a combination of web-server applications, 

‘hard-coded’ scripts available through numerous repositories and supplementary material, 

standalone software, and/or extensive programming in languages including R, Python, or C is 

currently required (Cock et al., 2009a; Junier and Zdobnov, 2010; Revell, 2012; Talevich et al., 

2012; Kück and Longo, 2014; Struck, 2014; Wolfe and Clark, 2015; Huerta-Cepas et al., 2016; 

Brown et al., 2017; Hernández et al., 2018; One Thousand Plant Transcriptomes Initiative, 

2019). As a result, integrating these functions into bioinformatic pipelines can be challenging, 

reducing their accessibility to the scientific community.  

 

To facilitate the integration of these methods into bioinformatic pipelines, we introduce PhyKIT, 

a UNIX shell toolkit with 30 functions (Table 1 from Steenwyk et al., 2021b) that have broad 
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utility for analyzing and processing MSAs and phylogenetic trees. Exemplary functions 

implemented in PhyKIT include measuring topological similarity of phylogenetic trees, creating 

codon-based MSAs, concatenating sets of MSAs into phylogenomic datasets, editing and/or 

viewing alignments and phylogenetic trees, and identifying putatively spurious homologs in 

MSAs. We highlight three uses of PhyKIT: (1) calculating diverse statistics that summarize the 

information content and potential biases (e.g., sequence- or phylogeny-based biases) in MSAs 

and phylogenetic trees; (2) creating a gene-gene covariation network; and (3) inferring the 

presence of polytomies from phylogenomic data. The diverse functions implemented in PhyKIT 

will likely be of interest to bioinformaticians, molecular biologists, evolutionary biologists, and 

others. 

 

Materials and Methods 

PhyKIT is a command line tool for the UNIX shell environment written in the Python 

programming language (https://www.python.org/). PhyKIT requires few dependencies 

(Biopython (Cock et al., 2009a) and SciPy (Virtanen et al., 2020)) making it user-friendly to 

install and integrate into existing bioinformatic pipelines. Online documentation of PhyKIT 

comes complete with tutorials that detail use cases for various functions. Lastly, PhyKIT is 

modularly designed to allow straightforward integration of additional functions in future 

versions.  

 

PhyKIT has 30 different functions that help process and analyze MSAs and phylogenetic trees 

(Table 1 from Steenwyk et al., 2021b). The 30 functions can be grouped into broad categories 

that assist in conducting analyses of MSAs and phylogenies or in processing/editing them. For 

https://www.python.org/


307  

example, “analysis” functions help examine information content biases, gene-gene covariation, 

and polytomies in phylogenomic datasets; “processing/editing” functions help prune tips from 

phylogenies, collapse poorly supported bipartitions in phylogenetic trees, concatenate sets of 

MSAs into a single data matrix, or create codon-based alignments from protein alignments and 

their corresponding nucleotide sequences.  

 

Detailed information about each one of PhyKIT’s functions and tutorials for using the software 

can be found in the online documentation (https://jlsteenwyk.com/PhyKIT). Here, we focus on 

three specific groups of functions implemented in PhyKIT that enable researchers to summarize 

information content in phylogenomic datasets, create gene-gene evolutionary rate covariation 

networks, and identifying polytomies in phylogenomic data. 

 

Evaluating information content and biases in phylogenomic datasets 

MSAs and phylogenetic trees are frequently examined to evaluate their information content and 

potential biases in characteristics such as sequence composition or branch lengths (Phillips and 

Penny, 2003; Philippe et al., 2011; Struck, 2014; Doyle et al., 2015; Shen et al., 2016a; Liu et al., 

2017; Smith et al., 2018). PhyKIT implements numerous functions for doing so. We demonstrate 

the application of 14 functions: 

(1) Alignment length. The length of a multiple sequence alignment, which is associated with 

robust bipartition support and tree accuracy (Shen et al., 2016a; Walker et al., 2019); 

(2) Alignment length with no gaps. The length of a multiple sequence alignment after excluding 

sites with gaps, which is associated with robust bipartition support and tree accuracy (Shen et al., 

2016a); 

https://jlsteenwyk.com/PhyKIT
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(3) Degree of violation of a molecular clock (DVMC). A metric used to determine the clock-like 

evolution of a gene using the standard deviation of branch lengths for a single gene tree (Liu et 

al., 2017). DVMC is calculated using the following formula: 

𝐷𝑉𝑀𝐶 =  √
1

𝑁 − 1
∑(𝑖𝑗 − 𝑖)̅

2
𝑁

𝑗=1

 

where N represents the number of tips in a phylogenetic tree, ij being the distance between the 

root of the tree and species j, and 𝑖 ̅represents the average root to tip distance. DVMC can be 

used to identify genes with clock-like evolution for divergence time estimation (Liu et al., 2017); 

(4) Internal branch lengths. Summary statistics of internal branch lengths in a phylogenetic tree 

are reported including mean, median, 25th percentile, 75th percentile, minimum, maximum, 

standard deviation, and variance values. Examination of internal branch lengths is useful in 

evaluating phylogenetic tree shape; 

(5) Long branch score. A metric that examines the degree of taxon-specific long branch 

attraction (Struck, 2014; Weigert et al., 2014). Long branch scores of individual taxa are 

calculated using the following formula: 

𝐿𝐵𝑖 =  (
𝑃𝐷𝑖
̅̅ ̅̅ ̅

𝑃𝐷𝑎𝑙𝑙
̅̅ ̅̅ ̅̅ ̅

− 1) × 100 

where 𝑃𝐷𝑖
̅̅ ̅̅ ̅ represents the average pairwise patristic distance of taxon i to all other taxa, 𝑃𝐷𝑎𝑙𝑙

̅̅ ̅̅ ̅̅ ̅ 

represents the average patristic distance across all taxa, and 𝐿𝐵𝑖 represents the long branch score 

of taxon i. Long branch scores can be used to evaluate heterogeneity in tip-to-root distances and 

identify taxa that may be susceptible to long branch attraction; 

(6) Pairwise identity. Pairwise identity is a crude approximation of the evolutionary rate of a 

gene and is calculated by determining the average number of sites in an MSA that are the same 
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character state between all pairwise combinations of taxa. This can be used to group genes based 

on their evolutionary rates (e.g., faster-evolving genes vs. slower-evolving ones) (Chen et al., 

2017); 

(7) Patristic distances. Patristic distances refer to all distances between all pairwise combinations 

of tips in a phylogenetic tree (Fourment and Gibbs, 2006), which can be used to evaluate the rate 

of evolution in gene trees or taxon sampling density in species trees; 

(8) Parsimony-informative sites. Parsimony-informative sites are those sites in an MSA that have 

a least two character states (excluding gaps) that occur at least twice (Kumar et al., 2016); the 

number of parsimony-informative sites is associated with robust bipartition support and tree 

accuracy (Shen et al., 2016a; Steenwyk et al., 2020b); 

(9) Variable sites. Variable sites are those sites in an MSA that contain at least two different 

character states (excluding gaps) (Kumar et al., 2016); the number of variable sites is associated 

with robust bipartition support and tree accuracy (Shen et al., 2016a); 

(10) Relative composition variability. Relative composition variability is the average variability 

in the sequence composition among taxa in an MSA. Relative composition variability is 

calculated using the following formula: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  ∑ ∑
|𝑐𝑖𝑗 − 𝑐�̅�|

𝑠 × 𝑛

𝑛

𝑗=1

𝑐

𝑖=1
 

where c is the number of different character states per sequence type, n is the number of taxa in 

an MSA, cij is the number of occurrences of the ith character state for the jth taxon, 𝑐�̅� is the 

average number of the ith c character state across n taxa, and s refers to the total number of sites 

(characters) in an MSA. Relative composition variability can be used to evaluate potential 

sequence composition biases in MSAs, which in turn violate assumptions of site composition 

homogeneity in standard models of sequence evolution (Phillips and Penny, 2003); 
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(11) Saturation. Saturation refers to when an MSA contains many sites that have experienced 

multiple substitutions in individual taxa. Saturation is estimated from the slope of the regression 

line between patristic distances and pairwise identities. Saturated MSAs have reduced 

phylogenetic information and can result in issues of long branch attraction (Lake, 1991; Philippe 

et al., 2011); 

(12) Total tree length. Total tree length refers to the sum of internal and terminal branch lengths 

and is calculated using the following formula: 

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑒𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =  ∑ 𝑙𝑖

𝑎

𝑖=1
+ ∑ 𝑙𝑗

𝑏

𝑗=1
 

 

Where li is the branch length of the ith branch of a internal branches and lj is the branch length of 

the jth branch of b terminal branches. Total tree length measures the inferred total amount or rate 

of evolutionary change in a phylogenetic tree; 

(13)  Treeness. Treeness (also referred to as stemminess) is a measure of the inferred relative 

amount or rate of evolutionary change that has taken place on internal branches of a phylogenetic 

tree (Lanyon, 1988; Phillips and Penny, 2003) and is calculated using the following formula: 

𝑡𝑟𝑒𝑒𝑛𝑒𝑠𝑠 =  ∑
𝑙𝑢

𝑙𝑡

𝑏

𝑢=1
 

where lu is the branch length of the uth branch of b internal branches, and lt refers to the total 

branch length of the phylogenetic tree. Treeness can be used to evaluate how much of the total 

tree length is observed among internal branches; 

(14) Treeness divided by relative composition variability. This function combines two metrics to 

measure both composition bias and other biases that may negatively influence phylogenetic 

inference. High treeness divided by relative composition variability values have been shown to 



311  

be less susceptible to sequence composition biases and are associated with robust bipartition 

support and tree accuracy (Phillips and Penny, 2003; Shen et al., 2016a). 

 

Calculating gene-gene evolutionary rate covariation or coevolution 

Genes that share similar rates of evolution through speciation events (or coevolve) tend to have 

similar functions, expression levels, or are parts of the same multimeric complexes (Sato et al., 

2005; Clark et al., 2012). Thus, identifying significant coevolution between genes (i.e., 

identifying genes that are significantly correlated in their evolutionary rates across speciation 

events) can be a powerful evolution-based screen to determine gene function (Brunette et al., 

2019). 

 

To measure gene-gene evolutionary rate covariation, PhyKIT implements the mirror tree method 

(Pazos and Valencia, 2001; Sato et al., 2005), which examines whether two trees have correlated 

branch lengths. Specifically, PhyKIT calculates the Pearson correlation coefficient between 

branch lengths in two phylogenetic trees that share the same tips and topology. To account for 

differences in taxon representation between the two trees, PhyKIT first automatically determines 

which taxa are shared and prunes one or both such that the same set of taxa is present in both 

trees. PhyKIT requires that the two input trees have the same topology, which is typically the 

species tree topology inferred from whole genome or proteome data. Thus, the user will typically 

first estimate a gene’s branch lengths by constraining the topology to match that of the species 

tree. When running this function, users should be aware that many biological factors, such as 

horizontal transfer (Doolittle and Bapteste, 2007), incomplete lineage sorting (Degnan and 

Salter, 2005), and introgression / hybridization (Sang and Zhong, 2000), can lead to gene 
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histories that deviate from the species tree. In these cases, constraining a gene’s history to match 

that of a species may lead to errors in the covariation analysis. 

  

Due to factors including time since speciation and mutation rate, correlations between 

uncorrected branch lengths result in a high frequency of false positive correlations (Sato et al., 

2005; Clark et al., 2012; Chikina et al., 2016). To ameliorate the influence of these factors, 

PhyKIT first transforms branch lengths into relative rates. To do so, branch lengths are corrected 

by dividing the branch length in the gene tree by the corresponding branch length in the species 

tree. Previous work revealed that one or a few outlier branch length values can be responsible for 

false positive correlations and should be removed prior to analysis (Clark et al., 2012). Thus, 

PhyKIT removes outlier data points defined as having corrected branch lengths greater than five 

(i.e., removing gene tree branch lengths that are five or more times greater than their 

corresponding species tree branch lengths). Lastly, values are converted into relative rates using 

a Z-transformation. The resulting relative rates are used when calculating Pearson correlation 

coefficients. 

 

Identifying polytomies in phylogenomic data 

Rapid radiations or diversification events have occurred throughout the tree of life including 

among mammals, birds, plants, and fungi (Jarvis et al., 2014; Liu et al., 2017; One Thousand 

Plant Transcriptomes Initiative, 2019; Li et al., 2020). Polytomies correspond to internal 

branches whose length is 0 (or statistically indistinguishable from 0) and can be driven either by 

biological (e.g., rapid radiations) or analytical (e.g., low amount of data) factors. Thus, 

polytomies are useful for inferring rapid radiation or diversification events and exploring 
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incongruence in phylogenies (Sayyari and Mirarab, 2018; One Thousand Plant Transcriptomes 

Initiative, 2019; Li et al., 2020).  

 

To identify polytomies, a modified approach to a previous strategy was implemented (Sayyari 

and Mirarab, 2018). More specifically, the support for three alternative topologies is calculated 

among all gene trees from a phylogenomic dataset. For example, in species tree ((A,B),C), D);, if 

examining the presence of a polytomy at the ancestral bipartition of tips A, B, and C, PhyKIT 

will determine the number of gene trees that support ((A,B),C);, ((A,C),B);, and ((B,C),A); using 

the rooted gene trees provided by the user. Equal support for the three topologies (i.e., the 

presence of a polytomy) among a set of gene trees is assessed using a Chi-squared test. Failing to 

reject the null hypothesis is indicative of a polytomy (Sayyari and Mirarab, 2018). Note that this 

approach is distinct from the approach of Sayyari and Mirarab to identify polytomies because 

PhyKIT uses a gene-based signal rather than a quartet-based signal. The difference between the 

two methods is that each gene contributes equally to the inference of a polytomy when a gene-

based signal is used, whereas genes with greater taxon representation (which contain a greater 

number of quartets) will contribute a greater signal during polytomy identification when a 

quartet-based signal is used. From a technical perspective, both approaches are simple to 

implement and require only a single line of code in the command-line. 

 

Data availability 

Data are available on figshare (doi: 10.6084/m9.figshare.13118600). 
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Results 

We outline three example uses of PhyKIT: 1) summarizing information content and identifying 

potential biases in animal, plant, yeast, and filamentous fungal phylogenomic datasets  (Shen et 

al., 2016b; Laumer et al., 2019; One Thousand Plant Transcriptomes Initiative, 2019; Steenwyk 

et al., 2019c), 2) constructing a network of significant gene-gene covariation, which reveals 

genes of shared functions from empirical data spanning ~550 million years of evolution among 

fungi (Shen et al., 2020b), and 3) illustrating how to identify polytomies using simulated and 

empirical data (Steenwyk et al., 2019c). 

 

Summarizing information content and biases in phylogenomic data 

Examining information content in phylogenomic datasets can help diagnose potential biases that 

stem from low signal-to-noise ratios, multiple substitutions, non-clocklike evolution, and other 

biological or analytical factors. To demonstrate the utility of PhyKIT to summarize the 

information content in phylogenomic datasets, we calculated 14 different metrics known to help 

diagnose potential biases in phylogenomic datasets or be associated with accurate and well 

supported phylogenetic inferences (Felsenstein, 1978; Phillips and Penny, 2003; Philippe et al., 

2011; Struck, 2014; Doyle et al., 2015; Shen et al., 2016a; Liu et al., 2017; Smith et al., 2018) 

using four empirical phylogenomic datasets from animals (201 tips; 2,891 genes) (Laumer et al., 

2019), budding yeast (332 taxa; 2,408 genes) (Shen et al., 2018), filamentous fungi (93 taxa; 

1,668 genes) (Steenwyk et al., 2019c), and plants (1,124 taxa; 403 genes) (One Thousand Plant 

Transcriptomes Initiative, 2019) (Figure 47, Table 1 from Steenwyk et al., 2021b).  
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Fig. 47. Summary of information content in four empirical phylogenomic datasets. 

Fourteen exemplary metrics implemented in PhyKIT help summarize the information content 

and identify potential biases in phylogenomic datasets. Each graph displays a violin plot with a 

black point representing the mean. Error bars indicate one standard error above and below the 

mean; however, these are difficult to see in nearly all graphs because they were often near the 

mean. Abbreviations are as follows: Aln. len.: alignment length; Aln. len. no gaps: alignment 

length excluding sites with gaps; DVMC: degree of violation of a molecular clock; Internal 

branch len.: average internal branch length; patristic distances: average patristic distance in a 

gene tree; percent PI sites: percentage of parsimony-informative sites in an MSA; percent var. 

sites: percentage of variable sites in an MSA; RCV: relative composition variability 
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Examination of the distributions of the values of the 14 different metrics revealed inter- and 

intra-dataset heterogeneity (Figure 47). For example, inter-dataset heterogeneity was observed 

among animal and plant datasets, which had the lowest and highest average pairwise identity 

across alignments, respectively; intra-dataset heterogeneity was observed in the uniform 

distribution of pairwise identities in the budding yeast datasets. Similarly, inter-dataset 

heterogeneity was observed in estimates of saturation where the budding yeast and filamentous 

fungal MSAs were less saturated by multiple substitutions than the plant and animal datasets; 

intra-data heterogeneity was also observed in all four datasets. Varying degrees of inter- and 

intra-dataset heterogeneity was observed for other information content statistics, which may be 

due biological (e.g., mutation rate) or analytical factors (e.g., taxon sampling, distinct alignment, 

trimming, and tree inference strategies).  

 

In summary, PhyKIT is useful for examining the information content of phylogenomic datasets. 

For example, the generation of different phylogenomic data submatrices by selecting subsets of 

genes or taxa with certain properties (e.g., retention of genes with the highest numbers of 

parsimony-informative sites or following removal of taxa with high long branch scores) can 

facilitate the exploration of the robustness of species tree inference or estimating time since 

divergence (Salichos and Rokas, 2013; Liu et al., 2017; Shen et al., 2018; Steenwyk et al., 

2019c; Walker et al., 2019; Li et al., 2020; Shen et al., 2020b). 

 

A network of gene-gene covariation reveals neighborhoods of genes with shared function 

Genes with similar evolutionary histories often have shared functions, are co-expressed, or are 

parts of the same multimeric complexes (Sato et al., 2005; Clark et al., 2012). Using PhyKIT, we 
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examined gene-gene covariation using 815 genes spanning 1,107 genomes and ~563 million 

years of evolution among fungi (Shen et al., 2020b). By examining 331,705 pairwise 

combinations of genes, we found 298 strong signatures of gene-gene covariation (defined as r > 

0.825). The two genes with the strongest signatures of covariation were SEC7 and TAO3 (r = 

0.87), suggesting that their protein products have similar or shared functions. Supporting this 

hypothesis, Sec7p contributes to cell-surface growth in the model yeast Saccharomyces 

cerevisiae (Novick and Schekman, 1979) and genes with the Sec7 domain are transcriptionally 

coregulated with yeast-hyphal switches in the human pathogen C. albicans (Song et al., 2008). 

Similarly, Tao3p in both S. cerevisiae and C. albicans is part of a RAM signaling network, 

which controls hyphal morphogenesis, polarized growth, and cell-cycle related processes 

including cell separation, cell proliferation, and phase transitions (Bogomolnaya et al., 2006; 

Song et al., 2008).  

 

Complex relationships of gene-gene covariation can be visualized as a network (Figure 48). 

Examination of network neighborhoods identified groups of genes that have shared functions and 

are parts of the same multimeric complexes. For example, the proteins encoded by NDC80 and 

NUF2 are part of the same kinetochore-associated complex termed the NDC80 complex—which 

is required for efficient mitosis (Sundin et al., 2011)—and significantly covary with one another 

(r = 0.84). Similarly, multiple genes that encode proteins involved in DNA replication and repair 

(i.e., POL2, MSH6, RAD26, CDC9, and EXO1) were part of the same network neighborhood, 

consistent with previous work suggesting an intimate interplay between DNA replication and 

multiple DNA repair pathways (Tsubouchi and Ogawa, 2000; Lujan et al., 2012; Boiteux and 

Jinks-Robertson, 2013). Other network neighborhoods of genes with shared function such as 
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ribosome biogenesis, Golgi apparatus-related transport, and control of DNA replication were 

identified (Figure 48).  

 

 

 

 
Fig. 48. Gene–gene covariation network inferred from ∼550 million years of evolution across 

1107 fungi. 

A network of significant gene–gene coevolution identifies network neighborhoods representative 

of associated functional categories. For example, the NDC80 and NUF2 genes (toward the top 

right of the network) were identified to be significantly coevolving with one another 

(r = 0.84, P < 0.01, Pearson’s correlation test); they both encode proteins that are part of the same 

multimeric kinetochore-associated complex (green). Similarly, genes that are DNA replication 

factors (orange), contribute to DNA replication and repair processes (yellow), participate in 
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Golgi apparatus-related transport (brown) or ribosome biogenesis (pink) were found to be 

neighbors in the network 

 
 

Taken together, these results indicate PhyKIT is a useful tool for evaluating gene-gene 

covariation and predicting genes’ functions (Sato et al., 2005; Clark et al., 2012; Brunette et al., 

2019). Thus, we anticipate PhyKIT will be helpful for evaluating gene-gene covariation and 

conducting evolution-based screens for gene functions across the tree of life.  

 

Identifying polytomies in phylogenomic datasets 

Rapid radiations or diversification events have occurred throughout the tree of life (Jarvis et al., 

2014; Liu et al., 2017; One Thousand Plant Transcriptomes Initiative, 2019; Li et al., 2020). One 

approach to identifying rapid radiations is by testing for the existence of polytomies in species 

trees (Sayyari and Mirarab, 2018; One Thousand Plant Transcriptomes Initiative, 2019; Li et al., 

2020). Polytomies can also arise when the amount of data at hand is insufficient for resolution 

(Walsh et al., 1999). To demonstrate the utility of PhyKIT to identify polytomies, we examined 

the ability of our approach to identify a simulated polytomy (Figure 49A). PhyKIT was able to 

conservatively identify the simulated polytomy demonstrating the efficacy of our approach. 
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Fig. 49. Identifying polytomies from phylogenomic data. 

(Ai) A cladogram of a simulated species phylogeny with tip names A–G. The red branch has a 

very short branch length of 2 × 10 − 5 substitutions per site. (Aii) Phylogram of the same 

phylogeny shows that all other branches are much longer (≥1.0 substitutions per site). (Aiii) 

After reconstructing the evolutionary history from 1000 alignments simulated from the 

phylogeny in Aii, the hypothesis of a polytomy was tested using gene-support frequencies for 

three alternative rooted topologies defined by the clades of green, orange and purple taxa. Failure 

to reject the null hypothesis of equal support among genes for each topology is indicative of a 

polytomy (χ2 = 5.97, P-value = 0.05, Chi-squared test). (B–D) The same approach was then used 

to examine if there is evidence for a polytomy at three different branches in a phylogeny of 

filamentous fungi. (D) Support for a polytomy (χ2 = 0.514, P-value = 0.77, Chi-squared test) was 

observed for the relationships between three different sections of Penicillium fungi. These results 
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demonstrate the utility of gene-support frequencies for evaluating polytomies and examining 

incongruence in phylogenomic datasets. 

 

We next examined if there is evidence of polytomies in the evolutionary history of filamentous 

fungi from the genera Aspergillus and Penicillium. We examined three branches. The first two 

branches—one dating back ~110 million years ago (Figure 49B), and another dating back ~25 

million years ago (Figure 49C)—were not polytomies. In contrast, examination of a ~60 million-

year-old branch involving Lanata-divaricata, Citrina, and Exilicaulis (Figure 49D), which are 

major lineages (or sections) in the genus Penicillium, was consistent with a polytomy. Given the 

large number of gene trees used in our analysis (n=1,668), these results are consistent with a 

rapid radiation or diversification event in the history of Penicillium species.  

 

In summary, these results suggest that PhyKIT is useful in identifying polytomies in simulated 

and empirical datasets. More broadly, these results support the notion that polytomies can be 

used to identify rapid radiation events. Beyond polytomy identification, PhyKIT can be used for 

exploring incongruence in phylogenies by calculating gene support frequencies. Calculations of 

gene-based support among different topologies can be used in diverse applications, including 

identifying putative introgression / hybridization events and conducting phylogenetically-based 

genome-wide association (PhyloGWAS) studies (Pease et al., 2016; Steenwyk et al., 2019c).  

 

Discussion 

We developed PhyKIT, a comprehensive toolkit for processing and analyzing MSAs and trees in 

phylogenomic datasets. Executing functions implemented in PhyKIT would otherwise require 

extensive programming, multiple software, and/or web-based applications (Table 1 from 
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Steenwyk et al., 2021b); thus, PhyKIT offers users a way to streamline approaches and pipelines 

by relying on only one software. PhyKIT is freely available on GitHub 

(https://github.com/JLSteenwyk/PhyKIT), PyPi (https://pypi.org/project/phykit/), and the 

Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under the MIT license with 

extensive documentation and user tutorials (https://jlsteenwyk.com/PhyKIT). PhyKIT is a fast 

and flexible toolkit for the UNIX shell environment, which allows it to be easily integrated into 

bioinformatic pipelines. We anticipate PhyKIT will be of interest to biologists from diverse 

disciplines and with varying degrees of experience in analyzing MSAs and phylogenies. In 

particular, PhyKIT will likely be helpful in addressing one of the greatest challenges in biology, 

building, understanding, and deriving meaning from the tree of life. 

 

  

https://github.com/JLSteenwyk/PhyKIT
https://pypi.org/project/phykit/
https://anaconda.org/JLSteenwyk/phykit
https://jlsteenwyk.com/PhyKIT
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CHAPTER 12 

ClipKIT: a multiple sequence alignment-trimming software for accurate phylogenomic 

inference11 

 

Introduction 

Multiple sequence alignment (MSA) of a set of homologous sequences is an essential step of 

molecular phylogenetics, the science of inferring evolutionary relationships from molecular 

sequence data. Errors in phylogenetic analysis can be caused by erroneously inferring site 

homology or saturation of multiple substitutions (Talavera and Castresana, 2007), which often 

present as highly divergent sites in MSAs. To remove errors and phylogenetically-uninformative 

sites, several methods “trim” or filter highly divergent sites using calculations of site/region 

dissimilarity from MSAs (Talavera and Castresana, 2007; Capella-Gutierrez et al., 2009; 

Criscuolo and Gribaldo, 2010; Jarvis et al., 2014). A beneficial by-product of MSA trimming, 

especially for studies that analyse hundreds of MSAs from thousands of taxa (Shen et al., 2020a), 

is that trimming MSAs reduces the computational time and memory required for phylogenomic 

inference. Nowadays, MSA trimming is a routine part of molecular phylogenetic inference 

(Kapli et al., 2020).  

 

Despite the overwhelming popularity of MSA trimming strategies, a recent study revealed that 

trimming often decreases, rather than increases, the accuracy of phylogenetic inference (Tan et 

al., 2015). This decrease suggests that current strategies may remove  

 

11This work is published in: Steenwyk, J. L., Buida, T. J., Li, Y., Shen, X.-X., and Rokas, A. 

(2020). ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic 

inference. PLOS Biol. 18, e3001007. doi:10.1371/journal.pbio.3001007. 
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phylogenetically-informative sites (e.g., parsimony-informative and variable sites) that have 

previously been shown to contribute to phylogenetic accuracy (Shen et al., 2016a). Furthermore, 

it was shown that phylogenetic inaccuracy is positively associated with the number of removed 

sites (Tan et al., 2015), revealing a speed-accuracy trade-off wherein trimmed MSAs decrease 

the computation time of phylogenetic inference but at the cost of reduced accuracy. More 

broadly, these findings highlight the need for alternative MSA trimming strategies. 

 

To address this need, we developed ClipKIT, an MSA-trimming algorithm based on a 

conceptually novel framework. Rather than aiming to identify and remove putatively 

phylogenetically-uninformative sites in MSAs, ClipKIT instead focuses on identifying and 

retaining parsimony-informative sites, which (alongside other types of sites and features of 

MSAs, such as variable sites and alignment length) have previously been shown to be 

phylogenetically informative (Shen et al., 2016a). ClipKIT implements a total of five different 

trimming strategies. Certain ClipKIT trimming strategies allow users to also retain constant sites, 

which inform base frequencies in substitution models (Nguyen et al., 2015), and / or trim 

alignments based on the fraction of taxa represented by gaps per site (or site gappyness). We 

tested the accuracy and support of phylogenetic inferences using ClipKIT and other alignment 

trimming software using nearly 140,000 alignments from empirical datasets of mammalian and 

budding yeast sequences (Shen et al., 2016a) and simulated datasets of metazoans, plants, 

filamentous fungi, and a larger sampling of budding yeasts sequences (Xi et al., 2014; Whelan et 

al., 2015; Shen et al., 2016b; Steenwyk et al., 2019c). We found that ClipKIT-trimmed 

alignments led to accurate and well supported phylogenetic inferences that consistently 

outperformed other alignment trimming software. Additionally, we note that ClipKIT-trimmed 
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alignments can save computation time during phylogenetic inference. Taken together, our results 

demonstrate that alignment trimming based on identifying and retaining parsimony-informative 

sites is a robust alignment trimming strategy. 

 

Materials and Methods 

ClipKIT availability and usage 

ClipKIT is a standalone software written in the Python programming language 

(https://www.python.org/) and is available from GitHub, 

https://github.com/JLSteenwyk/ClipKIT, and PyPi, https://pypi.org/. Complete documentation is 

available online (https://jlsteenwyk.com/ClipKIT/). ClipKIT differs from most multiple sequence 

alignment (MSA) trimming software in that it focuses on identifying and retaining parsimony-

informative sites from MSAs rather than on removing highly divergent ones. To do so, ClipKIT 

conducts site-by-site examination of MSAs and determines whether they should be retained or 

trimmed based on the strategy of ClipKIT being used and how the site has been classified. 

During site-by-site examination of MSAs, sites are either classified as parsimony-informative, as 

constant sites, or neither. Note that other types of sites and features of MSAs have previously 

been shown to be phylogenetically-informative (e.g., variable sites and MSA length), however, 

ClipKIT focuses on parsimony-informative sites. Parsimony-informative sites are defined as 

sites that contain at least two character states that occur in at least two taxa. Constant sites are 

defined as sites with only one character state that appears in at least two taxa (Kumar et al., 

2016). Across the various ClipKIT strategies, parsimony-informative sites are always retained, 

constant sites are either retained or removed, and sites that are neither parsimony-informative nor 

constant are always removed.  

https://www.python.org/
https://github.com/JLSteenwyk/ClipKIT
https://pypi.org/
https://jlsteenwyk.com/ClipKIT/
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Previous work (Jarvis et al., 2014) identified two types of “aberrant sites”: (1) sites where only 

one sequence is represented in the alignment, and (2) sites where only two taxa are represented 

and lack homology (defined by a null model of genome-wide sequence similarity based on 

species-level divergences) to any other taxa in the alignment. For the first strategy, sites with 

these features in multiple sequence alignments may stem from a genuine insertion event in one 

taxon or from assembly, annotation, and/or alignment errors; for the second strategy, homology 

is defined according to a null model of expected homology based on species-level sequence 

divergence. ClipKIT removes any sites that are not parsimony-informative or constant; it also 

removes sites that contain high percentages of gaps. Thus, such “aberrant sites” are typically 

removed by ClipKIT. 

 

Lastly, ClipKIT can also perform alignment trimming based on site gappyness, which is defined 

as the percentage of taxa that contain a gap character state (as opposed to a nucleotide or amino 

acid character state) at a given site. The five ClipKIT trimming strategies are summarized as 

follows:  

1) kpi: a strategy that retains sites that are parsimony-informative, which is specified with the 

following command: 

clipkit <MSA> -m kpi; 

This strategy executes the following pseudocode: 

FOR site in alignment: 

>IF site is parsimony-informative 

>>keep the site 



327  

>ELSE 

>>remove the site 

ENDFOR 

 

2) kpic: a strategy that retains sites that are either parsimony-informative or constant, which is 

specified with the following command:  

clipkit <MSA> -m kpic; 

This strategy executes the following pseudocode: 

FOR site in alignment: 

>IF site is parsimony-informative or constant 

>>keep the site 

>ELSE 

>>remove the site 

ENDFOR 

 

3) gappy: a strategy that removes sites that are gappy-rich (defined as sites with ≥90% gaps), 

which is specified with the following command: 

clipkit <MSA> -m gappy, 

Because gappy-based trimming is the default strategy, it can also be executed with the following 

command: 

clipkit <MSA>; 

This strategy executes the following pseudocode: 

FOR site in alignment: 
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>IF site has ≥90% gaps 

>>keep the site 

>ELSE 

>>remove the site 

ENDFOR 

 

4) kpi-gappy: a combination of strategies 1 and 3, which is specified with the following 

command:  

clipkit <MSA> -m kpi-gappy; 

This strategy executes the following pseudocode: 

FOR site in alignment: 

>IF site is parsimony-informative AND has ≥90% gaps 

>>keep the site 

>ELSE 

>>remove the site 

ENDFOR 

 

and 5) kpic-gappy: a combination of strategies 2 and 3, which is specified with the following 

command: 

clipkit <MSA> -m kpic-gappy. 

This strategy executes the following pseudocode: 

FOR site in alignment: 

>IF site is (parsimony-informative OR constant) AND has ≥90% gaps 
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>>keep the site 

>ELSE 

>>remove the site 

ENDFOR 

 

All output files have the same name as the input files with the addition of the suffix “.clipkit.” 

Users can specify output files names with the -o/--output option. For example, an alignment may 

have the output name “ClipKIT_trimmed_aln.fa” with the following command:  

clipkit <MSA> -o ClipKIT_trimmed_aln.fa. 

 

To enable users to fine-tune alignment trimming parameters, we provide an additional option for 

users to specify their own gappyness threshold, which can range between zero and one. For 

example, to retain sites with ≥95% gaps, the following command would be used: 

 

clipkit <MSA> -g 0.95 

 

This gappyness threshold would execute the following pseudocode: 

FOR site in alignment: 

>IF site has ≥95% gaps 

>>keep the site 

>ELSE 

>>remove the site 

ENDFOR 
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In practice, we recommend the use of very high gappyness thresholds; the use of lower 

thresholds may remove too many sites, which may worsen phylogenetic inferences (Shen et al., 

2016a). 

 

To enable users to examine the trimmed sites/regions from MSAs, we have also implemented a 

logging option in ClipKIT. When used, the logging option outputs an additional four-column file 

with the following information: column 1, position in the alignment (starting at 1); column 2, 

whether or not the site was trimmed or kept; column 3, reports if the site was parsimony-

informative, constant, or neither and; column 4, reports the gappyness of the site. Log files are 

generated using the -l/--log option: 

clipkit <MSA> -l 

We anticipate this information will be helpful for alignment diagnostics, fine-tuning of trimming 

parameters, and other reasons. 

 

To enable seamless integration of ClipKIT into pre-existing pipelines, eight file types can be 

used as input. More specifically, ClipKIT can input and output fasta, clustal, maf, mauve, phylip, 

phylip-sequential, phylip-relaxed, and stockholm formatted MSAs. By default, ClipKIT 

automatically determines the input file format and creates an output file of the same format; 

however, users can specify either with the -if/--input_file_format and -of/--output_file_format 

options. For example, an input file of fasta format and a desired output file of clustal format can 

be specified using the following command: 

 clipkit <MSA> -if fasta -of clustal  
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Recent analyses indicate that ~28% of available computational tools fail to install due to 

implementation errors (Mangul et al., 2019b). To overcome this hurdle and ensure archival 

stability of ClipKIT, we implemented state-of-the-art software development practices and design 

principles. More specifically, ClipKIT is composed of highly modular, extensible, and reusable 

code, which allows for easy debugging and seamless integration of new functions and features. 

We wrote a total of 118 unit and integration tests resulting in 97% code coverage. We also 

implemented a robust continuous integration (CI) pipeline to automatically build, package, and 

test ClipKIT whenever code is modified. This CI pipeline runs a testing matrix for Python 

versions 3.6, 3.7, and 3.8. Given the current configuration, building and testing ClipKIT for 

future versions of Python will be straightforward. Lastly, central ClipKIT functions rely on few 

dependencies (i.e., BioPython (Cock et al., 2009a) and NumPy (Van Der Walt et al., 2011)). In 

summary, we have taken several measures to ensure ClipKIT implements MSA trimming 

strategies that do not sacrifice the accuracy of phylogenetic inference but also safeguard that 

ClipKIT will be a long-lasting computational tool for the field of molecular phylogenetics.   

 

Practical considerations when using ClipKIT 

Although ClipKIT strategies performed well across empirical genome-scale and simulated 

datasets, we acknowledge that testing every possible evolutionary scenario is impossible. This is 

further complicated by the lack of large-scale phylogenomic data matrices in which the true 

evolutionary relationships among organisms are known. Therefore, we recommend using 

multiple trimming strategies available in ClipKIT and examining the resulting ABS values for 

trees. Considering high ABS values often corresponded to lower nRF values (Supplementary 
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Figure 4 from Steenwyk et al., 2020b and 5 from Steenwyk et al., 2020b), using the resulting 

phylogeny with the highest ABS value may be representative of the phylogeny that most closely 

approximates the true evolutionary history. This may require substantially greater computation 

time. To potentially ameliorate the computation time issue that may arise, we recommend 

creating subsets of larger datasets that span alignments of various lengths and testing multiple 

trimming strategies on the reduced dataset. 

 

Although constant sites are thought to be important for informing parameters of substitution 

models (Nguyen et al., 2015), we observed variation in the performance of ClipKIT strategies 

that retain only parsimony-informative sites (kpi and kpi-gappy) and the performance strategies 

that retain parsimony-informative and constant sites (kpic and kpic-gappy). More specifically, at 

times strategies kpi and kpi-gappy outperformed kpic and kpic-gappy suggesting constant sites 

may not always be informative to substitution models. However, we note that trimming 

nucleotide sequences with strategies kpi and kpi-gappy may warrant ascertainment bias 

correction for nucleotide sequences because constant sites are absent from the trimmed 

alignments. 

 

Dataset acquisition and generation 

To test the efficacy of strategies from ClipKIT and other alignment trimming software (Table 1 

from Steenwyk et al., 2020b), we used a total of eight empirical and simulated datasets. For 

empirical datasets, we obtained publicly available untrimmed amino acid and nucleotide MSAs 

from 24 mammals (Nalignments=4,004) and 12 budding yeasts (Nalignments=5,664) totalling four 

datasets (Shen et al., 2016a). Publicly available amino acid alignments were generated with 
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MAFFT, v. 7.164, using the G-INS-I strategy with a gap penalty of 1.53 (Katoh and Standley, 

2013). Publicly available nucleotide alignments were generated by mapping nucleotide 

sequences onto the amino acid alignments. For simulated datasets, we simulated sequence 

evolution along proposed species phylogenies of 93 filamentous fungi (Steenwyk et al., 2019c), 

and from simulated amino acid sequence evolution along the species phylogenies of 70 

metazoans (Whelan et al., 2015), 46 flowering plants (Xi et al., 2014), and 96 budding yeasts 

(Shen et al., 2016b) (Nalignments=50 alignments per dataset or 200 total).  

 

Simulated sequences were generated with INDELible, v1.03 (Fletcher and Yang, 2009) using 

parameters suggested by the software developers. INDELible was chosen to generate simulated 

sequences because of its ability to also simulate insertion and deletion events, which are 

represented by gaps, a common feature in multiple sequence alignments. Nucleotide alignments 

for filamentous fungi were generated using the general time reversible (GTR) substitution model 

(Waddell and Steel, 1997). Additional parameters specified were state frequencies values of 0.1, 

0.2, 0.3, and 0.4 for T, C, A, and G nucleotides, respectively. We specified the substitution rate 

matrix using the scheme outlined in Supplementary table 1 from Steenwyk et al., 2020b. 

Insertion and deletion rates were set to be 5% as frequent as single substitutions. Insertion and 

deletions occurred according to the power law distribution (a=1.7, M=500). The tree’s root 

length was set to 1,000. For amino acids, all parameters were the same except the insertion and 

deletion rates were set to be 1% as frequent as single substitutions using the WAG model of 

substitutions, which was also used to specify state frequencies (Whelan and Goldman, 2001).  
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The resulting empirical and simulated MSAs were trimmed using 14 popular alignment trimming 

strategies (Table 1 from Steenwyk et al., 2020b). Altogether, we generated a total of 138,152 

MSAs [(4,004 mammalian + 5,664 yeast + 200 simulated MSAs) * (14 trimming strategies, 

including a “no trimming” strategy) = 138,152 MSAs], which were used to evaluate the 

performance of ClipKIT and other alignment trimming strategies.  

 

Measuring accuracy and support of phylogenetic inferences 

Phylogenetic inferences from MSAs were made using IQ-TREE, v1.6.11 (Nguyen et al., 2015). 

For nucleotide sequences, we used a GTR substitution model (Tavaré, 1986) with empirical base 

frequencies and a discrete Gamma model with four rate categories (Yang, 1994) or 

“GTR+F+G”; for amino acid sequences, we used the general WAG model of substitutions 

(Whelan and Goldman, 2001) with empirical base frequencies and a discrete Gamma model with 

four rate categories (Yang, 1994) or “WAG+F+G.”  

 

Tree accuracy was measured using normalized Robinson-Foulds (nRF) distances as calculated 

by ape, v5.3 (Paradis et al., 2004), R package (https://cran.r-project.org/), by comparing the 

inferred gene phylogenies to their species phylogenies. Tree support was measured using average 

bipartition support (ABS) from 5,000 ultrafast bootstrap approximations in IQ-TREE (Hoang et 

al., 2018). To determine if alignment trimming strategies resulted in substantially different 

alignment lengths, nRF values, and ABS values, we conducted principal component analysis 

using the R packages FactoMineR, v2.3 (Lê et al., 2008), and factoextra, v.1.0.6 (Kassambara 

and Mundt, 2017). All plots were made with FactoMineR, factoextra, and ggplot2, v2.3.1 

(Wickham, 2009), in the R, 3.6.2 (https://cran.r-project.org/), programming environment. 

https://cran.r-project.org/
https://cran.r-project.org/
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To summarize nRF and ABS values into a single summary metric, we used desirability 

functions. Desirability functions rescale a distribution of values to be between zero and one 

depending on whether or not low values (e.g., nRF) or high values (ABS) are best. More 

specifically, these transformations were conducted using the following approach: 

for nRF values:     

𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑙𝑜𝑤 = {

0
𝑌 − 𝐴

𝐵 − 𝐴
1

|
𝑌 > 𝐵

𝐴 ≤ 𝑌 ≤ 𝐵
𝑌 < 𝐴

 

where Y is the variable value, A is the maximum nRF value, and B is the minimum nRF value; 

for ABS values 

𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑖𝑔ℎ = {

0
𝑌 − 𝐴

𝐵 − 𝐴
1

|
𝑌 < 𝐴

𝐴 ≤ 𝑌 ≤ 𝐵
𝑌 > 𝐵

 

where Y is the variable value, A is the minimum ABS value, and B is the maximum ABS value. 

These transformations were conducted for the 14 different trimming strategies on a per gene 

basis. The resulting values were used to rank the relative performance of the 14 trimming 

strategies. 

 

To examine the accuracy of branch lengths among single-gene trees, Spearman rank correlations 

of branch lengths were calculated between untrimmed (control) and trimmed (treatment) 

simulated multiple sequence alignments. To do so, the topologies of the untrimmed and trimmed 

phylogenies must be identical. Therefore, branch lengths were inferred along phylogenies that 

were constrained to match the reference tree topology using IQ-TREE (Nguyen et al., 2015). 

This analysis was only done for simulated sequences because high confidence in alignment 
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quality and true tree topology is required. Spearman rank correlations were conducted using the 

ggpubr, v.0.2.5 (Kassambara, 2020), package in the R, 3.6.2 (https://cran.r-project.org/), 

programming environment. 

 

For species-level phylogenetic inferences, we used concatenated alignments of trimmed MSAs 

as input to IQ-TREE (Nguyen et al., 2015). Species-level phylogenetic inferences were also 

examined when using the quartet-based approach implemented in ASTRAL, v5.7.3 (Mirarab and 

Warnow, 2015), in which single-gene trees were used as input. Lastly, support among single-

gene trees for references topologies was assessed using the information theory-based measure 

tree certainty (Salichos and Rokas, 2013; Salichos et al., 2014; Kobert et al., 2016), which is 

implemented in RAxML, v8.2.10 (Stamatakis, 2014a). 

 

Software availability 

ClipKIT is available from GitHub, https://github.com/JLSteenwyk/ClipKIT, and PyPi, 

https://pypi.org/project/clipkit. Complete ClipKIT documentation is available online 

(https://jlsteenwyk.com/ClipKIT/). 

 

Data availability 

All alignments and phylogenies inferred in this study will be available from figshare (doi: 

10.6084/m9.figshare.12401618) upon publication. The following link is provided for review 

purposes only https://figshare.com/s/bd07b70b510bca3155b9. 

 

https://cran.r-project.org/
https://github.com/JLSteenwyk/ClipKIT
https://pypi.org/project/clipkit
https://jlsteenwyk.com/ClipKIT/
https://figshare.com/s/bd07b70b510bca3155b9
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Results 

To test the efficacy of ClipKIT, we examined the accuracy and support of single-gene and 

species-level phylogenetic trees inferred from untrimmed MSAs and MSAs trimmed using 14 

different strategies (Table 1 from Steenwyk et al., 2020b) across four empirical genome-scale 

datasets and four simulated datasets. The four empirical datasets correspond to the untrimmed 

amino acid and nucleotide MSAs from 24 mammals (Nalignments=4,004) and 12 budding yeasts 

(Nalignments=5,664) (Shen et al., 2016a). The four simulated datasets (Nalignments=50 alignments per 

dataset or 200 total) stem from simulated nucleotide sequence evolution along the species 

phylogeny of 93 filamentous fungi (Steenwyk et al., 2019c), and from simulated amino acid 

sequence evolution along the species phylogenies of 70 metazoans (Whelan et al., 2015), 46 

flowering plants (Xi et al., 2014), and 96 budding yeasts (Shen et al., 2016b). MSAs were 

trimmed using popular alignment trimming software (Table 1 from Steenwyk et al., 2020b) 

generating a total of 138,152 MSAs [(4,004 mammalian + 5,664 yeast + 200 simulated MSAs) * 

(14 trimming strategies, including a “no trimming” strategy) = 138,152 MSAs]. However, 

Gblocks and BMGE with an entropy threshold of 0.3 were not used for performance assessment 

of simulated datasets because they frequently removed entire MSAs. 

 

We found that the 14 strategies examined occupied distinct regions of feature space suggestive of 

substantial differences between MSAs (Figure 50). Variation in feature space was largely driven 

by normalized Robinson Foulds (nRF) and average bipartition support (ABS) measures along the 

first dimension and alignment length along the second dimension for both empirical  
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and simulated datasets (Figure S1 from Steenwyk et al., 2020b). In empirical datasets, we found 

that some ClipKIT strategies removed few sites while others removed many and, at times, the 

most sites (Supplementary figure 2 from Steenwyk et al., 2020b). Among simulated datasets, 

ClipKIT trimmed substantial portions of MSAs but variation was observed across MSAs and 

datasets (Supplementary figure 3 from Steenwyk et al., 2020b). Examination of nRF and ABS 

values revealed ClipKIT performed well, and at times the best, among the MSA-trimming 

strategies tested, suggesting that phylogenetic inferences made with ClipKIT-trimmed MSAs 

were both accurate and well supported (Supplementary figure 4 from Steenwyk et al., 2020b and 

5 from Steenwyk et al., 2020b). Finally, counter to previous evidence suggestive of a trade-off 

between trimming and phylogenetic accuracy (Tan et al., 2015), we found that ClipKIT 

aggressively trimmed MSAs in the empirical datasets without compromising phylogenetic tree 

accuracy and support (Supplementary figure S2 from Steenwyk et al., 2020b and S4 from 

Steenwyk et al., 2020b). 
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Fig 50. The 14 alignment trimming strategies tested differ in resulting MSAs and metrics of 

phylogenetic tree accuracy and support. 

Principal component analysis of alignment length, nRF, and ABS values across the 14 MSA 

trimming strategies for 4 empirical datasets (A) and 4 simulated datasets (B). Insets of scree plots 

depict the percentage of variation explained (y-axis) for the first 5 dimensions (x-axis). Data 

were scaled prior to conducting principal component analysis. Note that the BMGE 0.3 and 

Gblocks strategies are not represented in Fig 50B because they frequently removed entire 

alignments and were therefore removed from the analysis of simulated sequenced. Data used to 

generate this figure can be found on figshare (doi: 10.6084/m9.figshare.12401618). ABS, 

average bipartition support; BMGE, Block Mapping and Gathering with Entropy; MSA, multiple 

sequence alignment; nRF, normalized Robinson–Foulds. 

 

 

To obtain a summary of overall performance, we ranked the 14 strategies’ performance for each 

dataset using objective desirability-based integration of nRF and ABS values (Eidem et al., 

2018) (Figure 51). We found that the five ClipKIT strategies outperformed all others for amino 

acid sequences in the empirical mammalian dataset (Figure 51A) as well as in the simulated 

metazoan and flowering plant datasets (Figure 51E and F). Other strategies that performed well 

included trimAl with the ‘gappyout’ parameter for empirical datasets and Noisy for simulated 

datasets (Dress et al., 2008; Capella-Gutierrez et al., 2009). To evaluate MSA trimming strategy 

performance for empirical and simulated datasets, we examined average ranks across each set of 

four datasets and found that ClipKIT strategies were among the best performing (Figure 51 I-J). 

In empirical datasets, ClipKIT’s gappy strategy outperformed all others followed by no 

trimming, trimAl with the ‘gappyout’ parameter, and then four other ClipKIT strategies (Figure 

51I). In simulated datasets, all strategies generally performed better than in empirical datasets; 

the no trimming strategy ranked best followed by all five ClipKIT strategies (Figure 51J). These 

results suggest that ClipKIT, which focuses on retaining parsimony-informative sites, was on par 

with no trimming and frequently outperformed strategies that focus on removing highly 

divergent sites. 
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To examine the accuracy of branch lengths across MSA trimming strategies, we conducted 

correlation analysis between individual branch lengths in gene trees inferred from trimmed  

 

 
Fig 51. ClipKIT is a top-performing software for trimming MSAs. 

Desirability-based integration of accuracy and support metrics per MSA facilitated the 

comparison of relative performance of the 14 different MSA trimming strategies for empirical 

(A–D) and simulated (E–H) datasets. Examination of performance for individual datasets and 
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average performance across empirical (I) and simulated (J) datasets revealed that ClipKIT is a 

top-performing software. MSA trimming strategies are ordered along the x-axis from the 

highest-performing strategy to the lowest-performing one according to average desirability–

based rank. Boxplots embedded in violin plots have upper, middle, and lower hinges that 

represent the first, second, and third quartiles. Whiskers extend to 1.5 times the interquartile 

range. Data used to generate this figure can be found on figshare (doi: 

10.6084/m9.figshare.12401618). AA, amino acid; BMGE, Block Mapping and Gathering with 

Entropy; MSA, multiple sequence alignment; NT, nucleotide. 

 

alignments (treatment) and those inferred from untrimmed alignments (control). Because this 

analysis requires that untrimmed alignments are highly accurate, we conducted it only for 

individual simulated gene alignments. Notably, in our experimental set up, branch length 

estimates using trimmed alignments cannot be ‘more’ accurate than untrimmed alignments. 

Thus, an alignment trimming algorithm that does not negatively influence branch length 

estimates will have a Spearman rank correlation coefficient of 1.0. Examination of Spearman 

rank correlation coefficients revealed that branch lengths of trimmed alignments were typically 

very highly correlated with the branch lengths of untrimmed alignments (Supplementary figures 

6-9 from Steenwyk et al., 2020b); ClipKIT strategies had correlation coefficients of 1.0 

suggesting branch lengths inferred using ClipKIT trimmed alignments are accurate. 

 

To evaluate the performance of the 14 strategies for species-level phylogenetic inference, we 

conducted concatenation- and quartet-based phylogenetic inference using IQ-TREE and 

ASTRAL, v5.7.3 (Mirarab and Warnow, 2015), respectively. We found that all strategies 

resulted in nearly identical and well supported phylogenies (Supplementary figures 10-12 from 

Steenwyk et al., 2020b). We also calculated tree certainty, an information theory-based measure 

of tree incongruence, which was used to summarize the degree of agreement with the reference 

topology across gene trees. The output from this analysis is a single value ranging from zero to 
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one where low values reflect high levels of incongruence among gene trees in the reference 

topology and high values reflect low levels of incongruence with the reference topology among 

gene trees (Salichos and Rokas, 2013). Tree certainty values were typically high and similar 

across all trimming strategies except for a few instances where certain strategies, which do not 

include ClipKIT strategies, significantly underperformed compared to all the others 

(Supplementary figure 13 from Steenwyk et al., 2020b). Among simulated datasets, we found 

that ClipKIT strategies reduced computation time by an average of ~20% compared to no 

trimming. 

 

Discussion 

Current state-of-the-art MSA trimming strategies focus on the removal of highly divergent sites. 

Highly divergent sites are thought to lack phylogenetic signal either because they represent sites 

that have become mutationally saturated due to the occurrence of multiple substitutions or 

because they are the result of inaccurate inference of homology (Lake, 1991). A previous 

analysis suggested that MSA trimming strategies often decreased the accuracy of phylogenetic 

inference (Tan et al., 2015), highlighting the need for new strategies. 

 

To address this need, we developed ClipKIT, an alignment trimming software that focuses on 

identifying and retaining parsimony-informative sites. Examination of the accuracy and support 

of phylogenetic inferences revealed that ClipKIT strategies consistently and frequently 

outperformed other MSA trimming strategies and were on par with no trimming. These results 

suggest that MSA-trimming strategies focused on retaining phylogenetically-informative sites, 

such as parsimony-informative sites, hold promise for developing more accurate MSA trimming 
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strategies. We anticipate ClipKIT will be useful for phylogenomic inference and the quest to 

build the tree of life. 
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CHAPTER 13 

orthoSNAP: a tree splitting and pruning algorithm for retrieving single-copy orthologs 

from gene family trees12 

 

Introduction 

Molecular evolution studies, such as species tree inference, genome-wide surveys of positive 

selection, evolutionary rate estimation, measures of gene-gene coevolution, and others typically 

rely on single-copy orthologs (SC-OGs), a group of homologous genes that originated via 

speciation and are present in single-copy among species of interest (Rokas et al., 2003; Jeffares 

et al., 2015b; Li et al., 2017; Wu et al., 2017; Dong et al., 2019; Steenwyk et al., 2021e). In 

contrast, paralogs, homologous genes that originated via duplication and are often members of 

large gene families, are typically absent from these studies (Fig 52). Gene families of orthologs 

and paralogs often encode functionally significant proteins such as transcription factors, 

transporters, and olfactory receptors (Ozcan and Johnston, 1999; Malnic et al., 2004; Wingender 

et al., 2013; Niimura et al., 2014). The exclusion of SC-OGs from gene families has not only 

hindered our understanding of their evolution and phylogenetic informativeness but is also 

artificially reducing the number of gene markers available for molecular evolution studies. 

Furthermore, as the number of species and / or their evolutionary divergence increases in a data 

set, the number of SC-OGs decreases (Emms and Kelly, 2018; Thomas et al., 2020); case in 

 

12This work is published in: Steenwyk, J. L., Goltz, D. C., Buida, T. J., Li, Y., Shen, X.-X., and 

Rokas, A. (2021). orthoSNAP: a tree splitting and pruning algorithm for retrieving single-copy 

orthologs from gene family trees. bioRxiv, 2021.10.30.466607. doi:10.1101/2021.10.30.466607. 



345  

point, no SC-OGs were identified in a dataset of 42 plants (Emms and Kelly, 2018). As the 

number of available genomes across the tree of life continues to increase, our ability to identify 

SC-OGs present in many taxa will become more challenging. 

 
Fig. 52. Cartoon depiction of three classes of paralogs: outparalogs, inparalogs, and coorthologs. 

(A) Paralogs refer to related genes that have originated via gene duplication, such as genes M, N, 

and O. (B) Outparalogs and inparalogs refer to paralogs that are related to one another via a 

duplication event that took place prior to or after a speciation event, respectively. With respect to 

the speciation event that led to the split of taxa A, B, and C from D, genes M, N, and O are 

outparalogs because they arose prior to the speciation event; genes O1 and O2 in taxa A, B, and 

C are inparalogs because they arose after the speciation event. Species-specific inparalogs are 

paralogous genes observed only in one taxon in a dataset, such as gene N1 and N2 in taxon A. 
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Species-specific inparalogs N1 and N2 in taxon A are also coorthologs of gene N in taxa B, C, 

and D; the same is true for inparalogs O1 and O2 from taxon A, which are coorthologs of gene O 

from taxon D. 

 

 

In light of these issues, several methods have been developed to account for paralogs in specific 

types of molecular evolution studies—for example, in species tree reconstruction (Smith and 

Hahn, 2021). Methods such as SpeciesRax, STAG, ASTRAL-PRO, and DISCO can be used to 

infer a species tree from a set of SC-OGs and gene families composed of orthologs and paralogs 

(Emms and Kelly, 2018; Zhang et al., 2020; Morel et al., 2021; Willson et al., 2021). Other 

methods such as PHYLDOG (Boussau et al., 2013) and guenomu (de Oliveira Martins and 

Posada, 2017) jointly infer the species and gene trees, but require abundant computational 

resources, which has hindered their use for large datasets. Other software, such as 

PhyloTreePruner (Kocot et al., 2013), can conduct species-specific inparalog trimming, whereas 

Agalma (Dunn et al., 2013), as part of a larger automated phylogenomic workflow, can prune 

gene trees into maximally inclusive subtrees wherein each taxon is represented by one sequence. 

Although these methods have expanded the numbers of gene markers used in species tree 

reconstruction, they were not designed to facilitate the retrieval of as broad a set of SC-OGs as 

possible for downstream molecular evolution studies such as surveys of positive selection. 

Furthermore, the phylogenetic information content of these gene families remains unknown. 

 

To address this need, we developed orthoSNAP, a novel tree traversal algorithm that conducts 

tree splitting and species-specific inparalog pruning to identify SC-OGs nested within larger 

gene families. We term SC-OGs identified by orthoSNAP as SNAP-OGs because they were 

retrieved using a splitting and pruning procedure. orthoSNAP takes as input a gene family 



347  

phylogeny and associated FASTA file and will output individual FASTA files populated with 

sequences from SNAP-OGs (Fig 2). During tree traversal, tree uncertainty can be accounted for 

by orthoSNAP via collapsing poorly supported branches. In a set of four eukaryotic datasets that  

 
Fig. 53. Cartoon depiction of orthoSNAP workflow. 

(A) orthoSNAP takes as input two files: a FASTA file of a gene family with multiple homologs 

observed in one or more species and the associated gene family tree. The outputted file(s) will be 

individual FASTA files of SNAP-OGs. (B) A cartoon phylogenetic tree that depicts the 

evolutionary history of a gene family and five SNAP-OGs therein. While identifying SNAP-

OGs, orthoSNAP also identifies and prunes species-specific inparalogs (e.g., species2|gene2-

copy_0 and species2|gene2-copy_1), retaining only the inparalog with the longest sequence, a 

practice common in transcriptomics. Note, orthoSNAP requires that sequence naming schemes 

must be the same in both sequences and follow the convention in which a taxon identifier and 

gene identifier are separated by pipe (or vertical bar; “|”) character. 

 
contained 6,634 SC-OGs, we used orthoSNAP to identify an additional 6,630 SNAP-OGs. Using 

a combination of multivariate statistics and phylogenetic measures, we demonstrate that SNAP-
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OGs and SC-OGs have similar phylogenetic information content in all four datasets. We also 

observed similar patterns of support among SNAP-OGs and SC-OGs in a contentious branch in 

the tree of life. Taken together, these results suggest that orthoSNAP is helpful for expanding the 

set of gene markers available for molecular evolutionary studies. 

 

Materials and Methods 

orthoSNAP availability and documentation 

orthoSNAP is a command-line software written in the Python programming language 

(https://www.python.org/) and requires Biopython (Cock et al., 2009a) and NumPy (Van Der 

Walt et al., 2011). orthoSNAP is available under the MIT license from GitHub 

(https://github.com/JLSteenwyk/orthosnap), PyPi (https://pypi.org/project/orthosnap), and the 

Anaconda cloud (https://anaconda.org/JLSteenwyk/orthosnap). Documentation describes the 

orthoSNAP algorithm, parameters, and provides user tutorials 

(https://jlsteenwyk.com/orthosnap). 

 

orthoSNAP algorithm description and usage 

We next describe how orthoSNAP identifies SNAP-OGs. orthoSNAP requires two files as input: 

one is a FASTA file that contains two or more homologous sequences in one or more species and 

the other the corresponding gene family phylogeny in Newick format. In both the FASTA and 

Newick file, users must follow a naming scheme—wherein taxon identifiers and gene sequences 

identifiers are separated by a vertical bar (also known as a pipe character or “|”)—which allows 

orthoSNAP to determine which sequences were encoded in the genome of each taxon. After 

initiating orthoSNAP, the gene family phylogeny is first mid-point rooted and then SNAP-OGs 

https://www.python.org/
https://github.com/JLSteenwyk/orthosnap
https://pypi.org/project/orthosnap
https://anaconda.org/JLSteenwyk/orthosnap
https://jlsteenwyk.com/orthosnap
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are identified using a tree-traversal algorithm. To do so, orthoSNAP will loop through the 

internal branches in the gene family phylogeny and evaluate the number of distinct taxa 

identifiers among children terminal branches. If the number of unique taxa identifiers is greater 

than or equal to the taxon occupancy threshold (default: 50% of total taxa in the inputted 

phylogeny; users can specify an integer threshold), then all children branches and termini are 

examined further; otherwise, orthoSNAP will examine the next internal branch. Next, 

orthoSNAP will collapse branches with low support (default: 80, which is motivated by using 

ultrafast bootstrap approximations (Hoang et al., 2018) to evaluate bipartition support; users can 

specify an integer threshold) and conduct species-specific inparalog trimming wherein the 

longest sequence is maintained, a practice common in transcriptomics. Species-specific 

inparalogs are defined as sequences from the same taxon that are sister to one another or belong 

to the same polytomy (Kocot et al., 2013). The resulting set of taxa and sequences are examined 

to determine if one taxon is represented by one sequence and ensure these sequences have not yet 

been assigned to a SNAP-OG. If so, they are considered a SNAP-OG; if not, orthoSNAP will 

examine the next internal branch.  

 

The orthoSNAP algorithm is also described using the following pseudocode: 

FOR internal branch in midpoint rooted gene family phylogeny: 

> IF taxon occupancy among children termini is greater than or equal to taxon occupancy 

threshold; 

>> Collapse poorly supported bipartitions and trim species-specific inparalogs; 

>> IF each taxon among the trimmed set of taxa is represented by only one sequence and no 

sequences being examined have been assigned to a SNAP-OG yet; 
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>>> Sequences represent a SNAP-OG and are outputted to a FASTA file 

>> ELSE 

>>> examine next internal branch 

> ELSE 

>> examine next internal branch 

ENDFOR 

 

To enhance the user experience, arguments or default values are printed to the standard output, a 

progress bar informs the user of how of the analysis has been completed, and the number of 

SNAP-OGs identified as well as the names of the outputted FASTA files are printed to the 

standard output. 

 

Development practices and design principles to ensure long-term software stability 

Archival instabilities among software threatens the reproducibility of bioinformatics research 

(Mangul et al., 2019a). To ensure long-term stability of orthoSNAP, we implemented previously 

established rigorous development practices and design principles (Steenwyk et al., 2020b, 2021b, 

2021a; Steenwyk and Rokas, 2021b). For example, orthoSNAP features a refactored codebase, 

which facilitates debugging, testing, and future development. We also implemented a continuous 

integration pipeline to automatically build, package, and install orthoSNAP across Python 

versions 3.8, 3.8, and 3.9. The continuous integration pipeline also conducts 29 unit and 

integration tests, which span 95.92% of the codebase and ensure faithful function of orthoSNAP. 
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Dataset generation 

To generate a dataset for identifying SNAP-OGs and comparing them to SC-OGs, we first 

identified putative groups of orthologous genes across four empirical datasets. To do so, we first 

downloaded proteomes for each dataset, which were obtained from publicly available 

repositories on NCBI (S1 and S7 Fig from Steenwyk et al., 2021c; Table S1 from Steenwyk et 

al., 2021c and S7 from Steenwyk et al., 2021c) or figshare (Shen et al., 2018). Each dataset 

varied in its sampling of sequence diversity and in the evolutionary divergence of the sampled 

taxa. The dataset of 24 budding yeasts spans approximately 275 million years of evolution (Shen 

et al., 2018); the dataset of 36 filamentous fungi spans approximately 94 million years of 

evolution (Steenwyk et al., 2019c); the dataset of 26 mammals spans approximately 160 million 

years of evolution (Tarver et al., 2016); and the dataset of 28 placental mammals—which was 

used to study the contentious deep evolutionary relationships among placental mammals—

concerns an ancient divergence that occurred approximately 160 million years ago (Luo et al., 

2011). Putatively orthologous groups of genes were identified using OrthoFinder, v2.3.8 (Emms 

and Kelly, 2019), with default parameters, which resulted in 46,645 orthologous groups of genes 

with at least 50% taxon occupancy (Table S8 from Steenwyk et al., 2021c). 

 

To infer the evolutionary history of each orthologous group of genes, we first individually 

aligned and trimmed each group of sequences using MAFFT, v7.402 (Katoh and Standley, 

2013), with the “auto” parameter and ClipKIT, v1.1.3 (Steenwyk et al., 2020b), with the “smart-

gap” parameter, respectively. Thereafter, we inferred the best-fitting substitution model using 

Bayesian information criterion and evolutionary history of each orthologous group of genes 
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using IQ-TREE2, v2.0.6 (Minh et al., 2020). Bipartition support was examined using 1,000 

ultrafast bootstrap approximations (Hoang et al., 2018). 

 

To identify SNAP-OGs, the FASTA file and associated phylogenetic tree for each gene family 

with multiple homologs in one or more species was used as input for orthoSNAP, v0.0.1 (this 

study). Across 40,011 gene families with multiple homologs in one or more species in all 

datasets, we identified 6,630 SNAP-OGs with at least 50% taxon occupancy (S2 Fig from 

Steenwyk et al., 2021c; Table S8 from Steenwyk et al., 2021c). Unaligned sequences of SNAP-

OGs were then individually aligned and trimmed using the same strategy as described above. To 

determine gene families that were SC-OGs, we identified orthologous groups of genes with at 

least 50% taxon occupancy and each taxon was represented by only one sequence—6,634 

orthologous groups of genes were SC-OGs. 

 

Measuring and comparing information content among SC-OGs and SNAP-OGs 

To compare the information content of SC-OGs and SNAP-OGs, we calculated nine properties 

of multiple sequence alignments and phylogenetic trees associated with robust phylogenetic 

signal in the budding yeasts, filamentous fungi, and mammalian datasets (Table S4 from 

Steenwyk et al., 2021c). More specifically, we calculated information content from phylogenetic 

trees such as measures of tree certainty (average bootstrap support), accuracy (Robinson-Foulds 

distance (Robinson and Foulds, 1981)), signal-to-noise ratios (treeness (Phillips and Penny, 

2003)), and violation of clock-like evolution (degree of violation of a molecular clock or DVMC 

(Liu et al., 2017)). Information content was also measured among multiple sequence alignments 

by examining alignment length and the number of parsimony-informative sites, which are 
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associated with robust and accurate inferences of evolutionary histories (Shen et al., 2016) as 

well as biases in sequence composition (RCV (Phillips and Penny, 2003)). Lastly, information 

content was also evaluated using metrics that consider characteristics of phylogenetic trees and 

multiple sequence alignments such as the degree of saturation, which refers to multiple 

substitutions in multiple sequence alignments that underestimate the distance between two taxa 

(Philippe et al., 2011), and treeness / RCV, a measure of signal-to-noise ratios in phylogenetic 

trees and sequence composition biases (Phillips and Penny, 2003). For tree accuracy, 

phylogenetic trees were compared to species trees reported in previous studies (Tarver et al., 

2016; Shen et al., 2018; Steenwyk et al., 2019c). All properties were calculated using functions 

in PhyKIT, v1.1.2 (Steenwyk et al., 2021b). The function used to calculate each metric and 

additional information are described in Table S4 from Steenwyk et al., 2021c. 

 

Principal component analysis across the nine properties that summarize phylogenetic information 

content was used to qualitatively compare SC-OGs and SNAP-OGs in reduced dimensional 

space. Principal component analysis, visualization, and determination of property contribution to 

each principal component was conducted using factoextra, v1.0.7 (Kassambara and Mundt, 

2017), and FactoMineR, v2.4 (Lê et al., 2008), in the R, v4.0.2 (https://cran.r-project.org/), 

programming environment. Statistical analysis using a multi-factor ANOVA was used to 

quantitatively compare SC-OGs and SNAP-OGs using the res.aov() function in R. 

 

Information theory-based approaches were used to evaluate incongruence among SC-OGs and 

SNAP-OGs phylogenetic trees. More specifically, we calculated tree certainty and tree certainty-

all (Salichos and Rokas, 2013; Salichos et al., 2014; Kobert et al., 2016), which are conceptually 

https://cran.r-project.org/
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similar to entropy values and are derived from examining support among a set of gene trees and 

the two most supported topologies or all topologies that occur with a frequency of ≥5%, 

respectively. More simply, tree certainty values range from 0 to 1 in which low values are 

indicative of low congruence among gene trees and high values are indicative of high 

congruence among gene trees. Tree certainty and tree certainty-all values were calculated using 

RAxML, v8.2.10 (Stamatakis, 2014a).  

 

To examine patterns of support in a contentious branch concerning deep evolutionary 

relationships among placental mammals, we calculated gene support frequencies and ∆GLS. 

Gene support frequencies were calculated using the “polytomy_test” function in PhyKIT, v1.1.2 

(Steenwyk et al., 2021b). To account for uncertainty in gene tree topology, we also examined 

patterns of gene support frequencies after collapsing bipartitions with less than 75 ultrafast 

bootstrap approximation support using the “collapse” function in PhyKIT. To calculate ∆GLS, 

partition log-likelihoods were calculated using the “wpl” parameter in IQ-TREE2 (Minh et al., 

2020), which required as input a phylogeny in Newick format that represented either hypothesis 

one or hypothesis two (Fig 54A) and a concatenated alignment of SC-OGs and SNAP-OGs with 

partition information. Thereafter, gene-wise log-likelihood scores associated with hypothesis two 

were subtracted from gene-wise log-likelihood scores associated with hypothesis one. The 

resulting score is ∆GLS wherein values greater than zero support hypothesis one and values less 

than zero support hypothesis two. 

 

Data Availability 

Results and data are available from figshare (doi: 10.6084/m9.figshare.16875904). 
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Results 

SC-OGs and SNAP-OGs have similar information content 

To compare SC-OGs and SNAP-OGs, we first independently inferred orthologous groups of 

genes in three eukaryotic datasets of 24 budding yeasts, 36 filamentous fungi, and 26 mammals 

(S1 Fig from Steenwyk et al., 2021c; Table S1 from Steenwyk et al., 2021c). There was variation 

in the number of SC-OGs and SNAP-OGs in each lineage (S2 Fig from Steenwyk et al., 2021c; 

Table S2 from Steenwyk et al., 2021c). Interestingly, the ratio of SNAP-OGs : SC-OGs among 

budding yeasts, filamentous fungi, and mammals was 0.46, 0.83, and 5.53, respectively, 

indicating SNAP-OGs can substantially increase the number of gene markers in certain lineages. 

The number of SNAP-OGs identified in a gene family with multiple homologs in one or more 

species also varied (S3 Fig from Steenwyk et al., 2021c).  
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Fig. 54. SC-OGs and SNAP-OGs display similar patterns of support in a contentious branch 

concerning deep evolutionary relationships among placental mammals. 

(A) Two leading hypotheses for the evolutionary relationships among Eutheria, which have 

implications for the evolution and biogeography of the clade, are that Afrotheria and Xenarthra 

are sister to all other Eutheria (hypothesis one; blue) and that Afrotheria are sister to all other 

Eutheria (hypothesis two; pink). (B) Comparison of gene support frequency (GSF) values for 

hypotheses one, hypothesis two, as well as a third hypothesis (Xenarthra as sister to all other 

Eutheria represented in yellow) among 252 SC-OGs and 1,428 SNAP-OGs using an α level of 

0.01 revealed no differences in support (p = 0.26, Fischer’s exact test with Benjamini-Hochberg 

multi-test correction). Comparison after accounting for gene tree uncertainty by collapsing 

bipartitions with lower than 75 ultrafast bootstrap approximation support (SC-OGs collapsed vs. 

SNAP-OGs collapsed) also revealed no differences (p = 0.05; Fischer’s exact test with 

Benjamini-Hochberg multi-test correction). (C) Examination of the distribution of gene-wise 

log-likelihood scores (ΔGLS) revealed no difference between SNAP-OGs and SC-OGs (p = 

0.39; Wilcoxon rank sum test). ΔGLS values greater than zero are indicative of genes with 

greater support for hypothesis one; values less than zero are indicative of genes with greater 

support for hypothesis two. 

 
 

 

Similar taxon occupancy and best fitting models of substitutions were observed among SC-OGs 

and SNAP-OGs (S4 Fig from Steenwyk et al., 2021c; Table S3 from Steenwyk et al., 2021c), 

raising the question of whether SC-OGs and SNAP-OGs have similar information content. To 

answer this, we calculated nine properties of phylogenetic information content from multiple 

sequence alignments and phylogenetic trees from SC-OGs and SNAP-OGs (S5 Fig from 

Steenwyk et al., 2021c; Table S4 from Steenwyk et al., 2021c) and compared them using 

multivariate analysis and statistics as well as information theory-based phylogenetic measures. 

Principal component analysis enabled qualitative comparisons between SC-OGs and SNAP-OGs 

in reduced dimensional space and revealed a striking similarity (Fig 55, S6 Fig from Steenwyk et 

al., 2021c). Multivariate statistics, namely multi-factor analysis of variance, facilitated a 

quantitative comparison of SC-OGs and SNAP-OGs and revealed no difference between SC-

OGs and SNAP-OGs (p = 0.63, F = 0.23, df = 1; Table S5 from Steenwyk et al., 2021c) and no 
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interaction between the nine properties and SC-OGs and SNAP-OGs (p = 0.16, F = 1.46, df = 8). 

Similarly, multi-factor analysis of variance using an additive model, which assumes each factor  

 

 
Fig. 55. SC-OGs and SNAP-OGs have similar phylogenetic information content. 

To evaluate similarities and differences between SC-OGs (orange dots) and SNAP-OGs (blue 

dots), we examined each gene’s phylogenetic information content by measuring nine properties 

of multiple-sequence alignments and phylogenetic trees. We performed these analyses on 12,764 

gene families from three datasets—24 budding yeasts (1,668 SC-OGs and 1,392 SNAP-OGs) 

(A), 36 filamentous fungi (4,393 SC-OGs and 2,035 SNAP-OGs) (B), and 26 mammals (321 SC-

OGs and 1,775 SNAP-OGs) (C). Principal component analysis revealed striking similarities 

between SC-OGs and SNAP-OGs in all three datasets. For example, the centroid (i.e., the mean 

across all metrics and genes) for SC-OGs and SNAP-OGs, which is depicted as an opaque and 

larger dot, are very close to one another in reduced dimensional space. Supporting this 

observation, multi-factor analysis of variance with interaction effects of the 6,630 SNAP-OGs 

and 6,634 SC-OGs revealed no difference between SC-OGs and SNAP-OGs (p = 0.63, F = 0.23, 

df = 1) and no interaction between the nine properties and SC-OGs and SNAP-OGs (p = 0.16, F 

= 1.46, df = 8). Multi-factor analysis of variance using an additive model yielded similar results 

wherein SC-OGs and SNAP-OGs do not differ (p = 0.65, F = 0.21, df = 1). There are also very 

few outliers of individual SC-OGs and SNAP-OGs, which are represented as translucent dots, in 

all three panels. For example, SNAP-OGs outliers at the top of panel C are driven by high 

treeness/RCV values, which is associated with a high signal-to-noise ratio and/or low 

composition bias (Phillips and Penny, 2003); SNAP-OG outliers at the right of panel C are 

driven by high average bootstrap support values, which is associated with greater tree certainty 

(Salichos and Rokas, 2013); and the single SC-OG outlier observed in the bottom right of panel 

C is driven by a SC-OG with a high degree of violation of a molecular clock (Song et al., 2012), 

which is associated with lower tree certainty (Doyle et al., 2015). Multiple-sequence alignment 

and phylogenetic tree properties used in principal component analysis and abbreviations thereof 

are as follows: average bootstrap support (ABS), degree of violation of the molecular clock 

(DVMC), relative composition variability, Robinson-Foulds distance (RF distance), alignment 

length (Aln. len.), the number of parsimony informative sites (PI sites), saturation, treeness 

(tness), and treeness/RCV (tness/RCV). 
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is independent and there are no interactions, also revealed no differences between SC-OGs and 

SNAP-OGs (p = 0.65, F = 0.21, df = 1). Next, we calculated tree certainty, an information 

theory-based measure of tree congruence from a set of gene trees, and found similar levels of 

congruence among phylogenetic trees inferred from SC-OGs and SNAP-OGs (Table S6 from 

Steenwyk et al., 2021c). Taken together, these analyses demonstrate that SC-OGs and SNAP-

OGs have similar phylogenetic information content. 

 

SC-OGs and SNAP-OGs have similar patterns of support in a contentious branch in the 

tree of life 

To further compare SC-OGs and SNAP-OGs, we investigated patterns of support in a difficult-

to-resolve branch in the tree of life. More specifically, we evaluated the support between two 

leading hypotheses concerning deep evolutionary relationships among placental mammals: (1) 

Xenarthra (placental mammals from the Americas) and Afrotheria (placental mammals from 

Africa) are sister to all other Eutheria (Hallström et al., 2007; Wildman et al., 2007) or (2) 

Afrotheria are sister to all other Eutheria (Murphy, 2001; Murphy et al., 2001) (Fig 54A). 

Resolution of this conflict has important implications for understanding the historical 

biogeography of these organisms. To do so, we first obtained protein-coding gene sequences 

from six Afrotheria, two Xenarthra, 12 other Eutheria, and eight outgroup taxa from NCBI (S7 

Fig from Steenwyk et al., 2021c; Table S7 from Steenwyk et al., 2021c), which represent all 

annotated and publicly genome assemblies at the time of this study (Table S8 from Steenwyk et 

al., 2021c). Using the protein translations of these gene sequences as input to OrthoFinder, we 

identified 252 SC-OGs shared across taxa; application of orthoSNAP identified an additional 

1,428 SNAP-OGs, which represents a greater than five-fold increase in the number of gene 
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markers for this dataset (Table S8 from Steenwyk et al., 2021c). There was variation in the 

number of SNAP-OGs identified per orthologous group of genes (S8 Fig from Steenwyk et al., 

2021c). The highest number of SNAP-OGs identified in an orthologous group of genes was 10, 

which was a gene family of olfactory receptors and are known to have expanded in the 

evolutionary history of placental mammals (Niimura et al., 2014). The best fitting substitution 

models were similar between SC-OGs and SNAP-OGs (S9 Fig from Steenwyk et al., 2021c).  

 

Two independent tests examining support between alternative hypotheses of deep evolutionary 

relationships among placental mammals revealed similar patterns of support between SC-OGs 

and SNAP-OGs. More specifically, no differences were observed in gene support frequencies—

the number of genes that support one of three possible hypotheses at a given branch in a 

phylogeny—without or with accounting for single-gene tree uncertainty by collapsing branches 

with low support values (p = 0.26 and p = 0.05, respectively; Fischer’s exact test with 

Benjamini-Hochberg multi-test correction; Fig 54B; Table S9 from Steenwyk et al., 2021c). We 

next conducted a second test of single-gene support for hypothesis one or hypothesis two by 

measuring gene-wise log-likelihood scores (∆GLS), which is the difference in the log-likelihood 

score of a single gene when constrained to the topologies of the two hypotheses. In this case, 

positive ∆GLS are reflective of greater support for hypothesis one and negative ∆GLS are 

reflective of greater support for hypothesis two. No difference was observed in the distribution of 

∆GLS values (p = 0.39; Wilcoxon rank sum test). Examination of patterns of support in a 

contentious branch in the tree of life using two independent tests revealed SC-OGs and SNAP-

OGs are similar and further supports the observation that they contain similar phylogenetic 

information. 
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In summary, 46,645 orthologous groups of genes across four datasets contained 6,634 SC-OGs; 

application of orthoSNAP identified an additional 6,630 SNAP-OGs, doubling the number of 

gene markers. Comprehensive comparison of the phylogenetic information content among SC-

OGs and SNAP-OGs revealed no differences in phylogenetic information content. Strikingly, 

this observation held true when conducting hypothesis testing in a difficult-to-resolve branch in 

the tree of life. These findings suggest that SNAP-OGs may be useful for exploring patterns of 

molecular evolution ranging from genome-wide surveys of positive selection, phylogenomics, 

gene-gene coevolution analysis, and others. 

 

Discussion 

Molecular evolution studies typically rely on SC-OGs. Recently developed methods can 

integrate gene families of orthologs and paralogs into species tree inference but are not designed 

to broadly facilitate the retrieval of gene markers for molecular evolution analyses. Furthermore, 

the phylogenetic information content of gene families of orthologs and paralogs remains 

unknown. This observation underscores the need for algorithms that can identify SC-OGs nested 

within larger gene families, which can be in turn be incorporated into diverse molecular 

evolution analyses, and a comprehensive assessment of their phylogenetic properties. 

 

To address this need, we developed orthoSNAP, a tree splitting and pruning algorithm that 

identifies SNAP-OGs, which refers to SC-OGs nested within larger gene families wherein 

species specific inparalogs have also been pruned. Comprehensive examination of the 

phylogenetic information content of SNAP-OGs and SC-OGs from four empirical datasets of 
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diverse eukaryotic species revealed striking similarities. In certain datasets, SNAP-OGs were 

five times more prevalent than SC-OGs indicating SNAP-OGs can substantially increase the size 

of molecular evolution datasets. We note that our results are qualitatively similar to those 

reported recently by Smith et al. (Smith et al., 2021), which retrieved SC-OGs nested within 

larger families from 26 primates and examined their performance in gene tree and species tree 

inference. Three noteworthy differences are that we also conduct species-specific inparalog 

trimming, provide a user-friendly command-line software for SNAP-OG identification, and 

evaluated the phylogenetic information content of SNAP-OGs and SC-OGs across four diverse 

datasets. We also note that our algorithm can account for diverse types of paralogy—

outparalogs, inparalogs, and species-specific inparalogs—whereas other software like 

PhyloTreePruner, which conducts species-specific inparalog trimming (Kocot et al., 2013), and 

Agalma, which identifies single-copy outparalogs and inparalogs (Dunn et al., 2013), can 

account for some, but not all, types of paralogs. Our results, together with other studies, 

demonstrate the utility of SC-OGs that are nested within larger families (van der Heijden et al., 

2007; Dunn et al., 2013; Smith et al., 2021; Willson et al., 2021).  

 

Next, we discuss some practical considerations when using orthoSNAP. In the present study, we 

inferred orthology information using OrthoFinder (Emms and Kelly, 2019), but several other 

approaches can be used upstream of orthoSNAP. For example, other graph-based algorithms 

such as OrthoMCL (Li et al., 2003) or sequence similarity-based algorithms such as orthofisher 

(Steenwyk and Rokas, 2021b), can be used to infer gene families. Similarly, sequence similarity 

search algorithms like BLAST+ (Camacho et al., 2009), USEARCH (Edgar, 2010), and 
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HMMER (Eddy, 2011), can be used to retrieve homologous sets of sequences that are used as 

input for orthoSNAP.  

 

We suggest employing “best practices” when inferring groups of putatively orthologous genes, 

including SNAP-OGs. Specifically, orthology information can be further scrutinized using 

phylogenetic methods. Orthology inference errors may occur upstream of orthoSNAP; for 

example, SNAP-OGs may be susceptible to erroneous inference of orthology during upstream 

clustering of putatively orthologous genes. One method to identify putatively spurious orthology 

inference is by identifying long terminal branches (Shen et al., 2018). Terminal branches of 

outlier length can be identified using the “spurious_sequence” function in PhyKIT (Steenwyk et 

al., 2021b). Other tools, such as PhyloFisher, UPhO, and other orthology inference pipelines 

employ similar strategies to refine orthology inference (Yang and Smith, 2014; Ballesteros and 

Hormiga, 2016; Tice et al., 2021).   

 

Taken together, we suggest that orthoSNAP is useful for retrieving single-copy orthologous 

groups of genes from gene family data and that the identified SNAP-OGs have similar 

phylogenetic information content compared to SC-OGs. In combination with other 

phylogenomic toolkits, orthoSNAP may be helpful for reconstructing the tree of life and 

expanding our understanding of the tempo and mode of evolution therein. 
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CHAPTER 14 

orthofisher: a broadly applicable tool for automated gene identification and retrieval13 

 

Introduction 

Sequence similarity searches of genomic data are commonly employed in diverse fields of 

biology. Several pieces of software have been designed to infer statistically homologous 

sequences from databases of sequence data, such as BLAST, DIAMOND, and HMMER 

(Camacho et al., 2009; Eddy, 2011; Madden, 2013; Buchfink et al., 2015). One frequent use of 

sequence similarity search methods is for the identification of orthologs, sequences present in the 

common ancestor of two species, and homologs, sequences that stem from the same common 

ancestral sequence (Gabaldón and Koonin, 2013). For example, the OrthoFinder software 

conducts BLAST all-vs-all searches across proteomes to infer groups of putatively orthologous 

genes (Emms and Kelly, 2019). Similarly, the BUSCO software aims to identify putatively 

orthologous genes using a predetermined set of profile Hidden Markov Model sequence 

alignments (pHMMs) derived from single-copy orthologous proteins from the OrthoDB database 

(Waterhouse et al., 2013, 2018a).  

 

The results of these or similar pieces of software can facilitate diverse downstream analyses 

(Remm et al., 2001; Li et al., 2003; Train et al., 2017; Waterhouse et al., 2018a; Emms and 

Kelly, 2019). However, global analyses, such as those conducted by OrthoFinder, are  

 

13This work is published in: Steenwyk, J. L., and Rokas, A. (2021). orthofisher: a broadly 

applicable tool for automated gene identification and retrieval. G3 Genes|Genomes|Genetics 11. 

doi:10.1093/g3journal/jkab250. 
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computationally expensive and may be beyond the scope of a research project (e.g., studies 

focused on a few genes). Similarly, software that rely on databases, such as BUSCO, are 

constrained to the orthologs therein. As a result, there is a need for bioinformatic software that 

can conduct automated identification and retrieval of putative homologs and orthologs across 

sequence databases using user-specified query sequences and output files that facilitate 

downstream analyses. 

 

We introduce orthofisher, a command-line toolkit for automated identification of highly similar 

sequences across proteomes using custom pHMMs. orthofisher facilitates downstream analyses 

by creating multi-FASTA files populated with highly similar sequences identified during pHMM 

searches. Default parameters are designed to identify sequences with the highest sequence 

similarity (i.e., putative orthologous genes), but users can customize its use to best fit their 

research question (e.g., relaxed thresholds can be used to obtain all putatively homologous genes; 

similarly, searches in databases that contain gene isoforms can be used to retrieve all isoforms of 

a particular gene). We demonstrate the efficacy of orthofisher by evaluating the precision and 

recall for identification of sequences with high similarity to query pHMMs in a multiple 

sequence FASTA (multi-FASTA) files from animals, plants, and fungi. Comparison of 

orthofisher, BUSCO, and OrthoFinder revealed similar performance in identification of 

sequences with high sequence similarity. Thus, orthofisher aims to streamline gene identification 

and retrieval from genomic data, which is the first step of many bioinformatic analyses and 

projects. We anticipate orthofisher will be of interest to diverse fields of computational biology 

and to biologists and bioinformaticians.   
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Materials and Methods 

orthofisher requires two files as input (Figure 56). One file—specified with the -m, --hmm 

argument—provides the paths to query pHMMs that will be used during sequence similarity 

search; the other file—specified with the -f, --fasta argument—provides the paths to FASTA files 

that will be used as the sequence search database. orthofisher then loops through each FASTA 

file and uses each pHMM to search for similar sequences using HMMER3 (Eddy, 2011) with an 

expectation-value threshold of 0.001 (which can be modified with the -e, --evalue argument). 

orthofisher then parses the resulting HMMER3 output using biopython (Cock et al., 2009a) and 

identifies top hits. Top hits are defined following criteria used in the BUSCO pipeline 

(Waterhouse et al., 2018a) wherein all sequences with scores that are greater than or equal to 

85% of the score of the best hit are maintained. Users can modify this threshold using the -b, --

bitscore argument. Top hits are considered homologous genes. 

 

orthofisher outputs three directories and two text files that enable researchers to easily evaluate 

results from sequence similarity search and facilitate downstream analyses. The three directories 

are 

• hmmsearch_output: HMMER3 output files, 

• all_sequences: one multi-FASTA file per pHMM, which are populated with 

homologous sequences identified during the sequence similarity search step, and 

• scog: one multi-FASTA file per pHMM, which are populated with only those 

homologous sequences that are present at most only once in each genome. 

The two text files are 
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• short_summary.txt: the number and percentage of sequences present in single-copy, 

multi-copy, or absent sequences per pHMM search, and 

• long_summary.txt: the homologous sequences identified during pHMM search for every 

query and sequence database. 
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Fig. 56. Workflow overview for orthofisher. 

orthofisher takes two files as input, which specify the location of query pHMMs and the FASTA 

files wherein sequence similarity searches will be performed. orthofisher then outputs three 

directories and two text files that summarize results and facilitate downstream analyses. 

Contents of output files will be heavily dependent on user parameters, the pHMMs used, and the 

input files. For example, transcriptomic data may require additional processing steps such as 

collapsing isoforms into a single representative sequence per gene. The intent of orthofisher—

which is to identify single-copy orthologous genes—is flexible enough to capture paralogous 

sequences as well. A tutorial for how to use orthofisher is publicly available as part of the online 

documentation https://jlsteenwyk.com/orthofisher/tutorial. 

 

 

Nearly 30% of bioinformatic tools fail to install (Mangul et al., 2019b), which poses a nontrivial 

problem for the reproducibility of computational experiments. To remedy this issue, we 

implemented state-of-the-art standards of software development practices and design principles  

(Darriba et al., 2018) following previously established protocol (Steenwyk et al., 2020b, 2021b). 

For example, whenever changes to code are made, faithful function of orthofisher is tested using 

a continuous integration pipeline, a process that automatically builds, packages, and tests 

installation and function using Python versions 3.6, 3.7, and 3.8. We also wrote several unit and 

integration tests that span 95% of the orthofisher code. 

 

orthofisher comes complete with comprehensive documentation 

(https://jlsteenwyk.com/orthofisher/), is freely available under the MIT license, and is available 

for download from GitHub (https://github.com/JLSteenwyk/orthofisher), PyPi 

(https://pypi.org/project/orthofisher/), and the Anaconda Cloud 

(https://anaconda.org/jlsteenwyk/orthofisher). The proteomes, pHMMs, and outputs of 

orthofisher, BUSCO, and OrthoFinder are available through figshare (doi: 

10.6084/m9.figshare.14399150). 

https://jlsteenwyk.com/orthofisher/tutorial/index.html
https://jlsteenwyk.com/orthofisher/
https://github.com/JLSteenwyk/orthofisher
https://pypi.org/project/orthofisher/
https://anaconda.org/jlsteenwyk/orthofisher
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Results 

To determine the similarities and differences between orthofisher and other algorithms that 

identify putative orthologs, we compared results obtained from orthofisher with that of BUSCO 

and OrthoFinder. BUSCO and OrthoFinder are both widely adopted methods of identifying 

orthologous genes across multiple proteomes. As noted in the introduction, each software differs 

– more specifically, BUSCO conducts homology searches using a predefined set of pHMMs and 

OrthoFinder conducts proteome-wide analysis to identify groups of orthologous genes. Thus, we 

expect that if orthofisher can identify putative orthologs across proteomes, it will identify the 

same genes BUSCO identifies during its sequence similarity search. Given that both algorithms 

conduct pHMM-based searches, we anticipate that both will exhibit near identical performances. 

When comparing orthofisher and BUSCO to OrthoFinder, we anticipate the sequences identified 

during sequence similarity search by orthofisher and BUSCO will be in the same orthologous 

group of genes inferred by OrthoFinder. 

 

orthofisher and BUSCO obtain similar results 

To evaluate the efficacy of orthofisher, we compared results obtained from orthofisher to those 

obtained from BUSCO, v4.0.4 (Waterhouse et al., 2018a). To do so, both algorithms were used 

to identify 255 near-universally single-copy orthologous genes obtained from the Eukaryota 

OrthoDB, v10 (Waterhouse et al., 2013), database across the proteomes of animals (Homo 

sapiens: GCF_000001405.39; Mus musculus: GCF_000001635.27), plants (Arabidopsis 

thaliana, NCBI accession: GCA_000001735.2; Solanum lycopersicum: GCF_000188115.4), and 
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fungi (Saccharomyces cerevisiae, NCBI accession: GCA_000146045.2; Candida albicans: 

GCA_000182965.3). Measures of precision and recall were calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

where TP represents true positives, FP represents false positives, and FN represents false 

negatives of single-copy orthologous genes. Precision and recall values range from 0 to 1 and 

higher values reflect better performance.  

 

Near perfect values of precision and recall (0.98 or [231 / [231 + 4]] and 1.0 or [231 / [231 + 0]], 

respectively) reveal orthofisher is able to automate the identification and retrieval of sequences 

with high similarity to the query pHMM. A low false positive rate of 0.02 was observed. The 

difference in the performance of BUSCO and orthofisher stems from an additional set of gene-

specific score and length thresholds used by the BUSCO software, which are not implemented in 

orthofisher. These results demonstrate that orthofisher can accurately identify homologous genes. 

 

To demonstrate the importance of using a score threshold of 85% of the score observed in the 

best hit following the BUSCO pipeline (Waterhouse et al., 2018a), we highlight an example 

where absence of a score threshold would have led to identification of additional putatively 

orthologous genes. A HMMER search using the query BUSCO pHMM 1001705at2759 and a e-

value threshold of 1e-10 in the proteome of A. thaliana reports the gene as multi-copy whereas 

both orthofisher and BUSCO report this gene to be single-copy. More specifically, when using 

only an e-value threshold of 1e-10, the following nine genes are reported: AEE76455.1, 
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AEE78573.1, AEC10322.1, ANM68500.1, AED93406.1, AEE76521.1, AEE82221.1, 

AED98328.1, and AEE29324.1; however, AEE76455.1 has a score of 242.5 and the next best 

hit, AEE78573.1, has a score of 64.5. Thus, a score threshold of 85% of the best hit (in this case 

242.5*0.85) is helpful during sequence similarity searches. 

 

orthofisher and BUSCO perform similarly to OrthoFinder 

Comparison of the results of BUSCO and orthofisher to OrthoFinder, a global (or whole 

proteome) ortholog calling algorithm revealed BUSCO, orthofisher, and OrthoFinder produce 

similar results. To perform these comparisons, we first used OrthoFinder, v2.3.8 (Emms and 

Kelly, 2019), to identify putative orthologous groups of genes in the same animal, plant, and 

fungal proteomes described above using an inflation parameter of 1.5 and DIAMOND, 

v0.9.24.125 (Buchfink et al., 2015). Then, we determined if genes identified as multi-copy are 

part of the same or different orthologous group(s) of genes and also assessed if genes identified 

as single-copy in BUSCO or orthofisher were also single-copy in OrthoFinder.  

 

Among multi-copy genes, we found BUSCO and OrthoFinder had nearly identical performance 

in the proteomes of A. thaliana, S. lycopersicum, and C. albicans. For S. cerevisiae, one gene, 

1545004at2759, out of 255 differed between BUSCO and OrthoFinder wherein BUSCO 

identified two homologs and OrthoFinder split these two genes into different orthologous groups 

of genes. A similar scenario was observed among 12 / 255 and 3 / 255 genes in the human and 

mouse proteomes, respectively. For orthofisher, a similar scenario was observed for 1 / 255 

genes in S. lycopersicum; 1 / 255 genes in A. thaliana; 8 / 255 genes in S. cerevisiae; 4 / 255 

genes in C. albicans; 13 / 255 genes in the human proteome; and 4 / 255 genes in the mouse 
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proteome. We note that isoforms of the same gene sequence were present in the analysed 

proteomes and were accounted for in these analyses. 

 

Among single-copy genes, we observed a few instances where single-copy genes in BUSCO 

were multi-copy in OrthoFinder. More specifically, this was observed for 8 genes in S. 

lycopersicum; 16 genes in A. thaliana; 2 genes in S. cerevisiae; 2 genes in C. albicans; 36 genes 

in the human proteome; and 26 genes in the mouse proteome. Similar results were observed for 

orthofisher. More specifically, 16 / 255 genes in A. thaliana were identified as single-copy by 

orthofisher but were in multi-copy orthologous groups of genes in OrthoFinder. The same 

observation was made for 7 / 255 genes in S. lycopersicum; 1 / 255 gene in S. cerevisiae; 2 / 255 

genes in C. albicans; 35 / 255 genes in the human proteome; and 24 / 255 genes in the mouse 

proteome.  

 

In summary, sequence similarity searches of 255 genes in 6 proteomes identified differences 

among 105 genes (6.86%; 105 / 1,530) between BUSCO and OrthoFinder; similarly, we 

identified differences among 116 genes (7.58%; 116 / 1,530) between orthofisher and 

OrthoFinder. These differences likely stem from differences in the approach of each algorithm to 

identify putative orthologs. Specifically, OrthoFinder uses DIAMOND and Markov clustering to 

identify orthologous groups, BUSCO uses pHMM-based search and gene-specific score and 

length thresholds using OrthoDB, and orthofisher uses pHMM-based similarity search 

thresholds. Also, these differences are in part driven by each algorithm reporting different results 

(i.e., OrthoFinder reports groups of putatively orthologous genes and BUSCO and orthofisher 

report putative orthologous genes). 
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orthofisher is helpful for estimating the number of members in a gene family 

To demonstrate how to use orthofisher to estimate the number of gene family members, we 

estimate the number of DNA photolyase (PFam: PF00875) and zinc finger, C2H2 type (PFam: 

PF00096) homologs in S. cerevisiae, C. albicans, two species from the Hanseniaspora genus (H. 

uvarum NRRL Y1614 and H. vineae NRRL Y17529, both of which are known to lack DNA 

photolyases (Steenwyk et al., 2019a)), and three Aspergillus species (A. niger CBS 513.88, A. 

fumigatus Af293, and A. flavus NRRL 3357). When estimating gene family number, we 

recommend lowering the score threshold to, for example, 25% of the best hit, which we have 

done here. In line with previous reports, we found that Hanseniaspora species lacked DNA 

photolyases whereas S. cerevisiae, C. albicans, and all Aspergillus species had one or two DNA 

photolyases. In contrast, proteins with Zinc finger domains are more abundant across all species 

with copies ranging from 16 (H. vineae) to 39 (A. flavus).  

 

Discussion 

The intended use of orthofisher is to help identify orthologous genes across species using 

accurate and sensitive pHMM-based searches. We encourage users to evaluate results produced 

by orthofisher using additional approaches (e.g., phylogenetic inference) to infer precise 

relationships of orthology and paralogy among sequences. We note that orthofisher is not 

explicitly designed to identify a single-representative sequence if multiple isoforms encoded by 

one gene sequence are present in a proteome. Thus, we also suggest users collapse isoforms prior 

to or after orthofisher analysis following standard protocol in many transcriptomics studies. 
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In summary, orthofisher is a command-line tool for automated identification and retrieval of 

genes of interest from genomic data. We anticipate orthofisher will be useful for evaluating 

genome completeness, performing phylogenomic inferences, estimating gene family size, and 

other analyses that rely on identification and retrieval of homologous genes from genomic data. 
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CHAPTER 15 

treehouse: a user-friendly application to obtain subtrees from large phylogenies14 

 

Introduction 

Evolutionary biology relies on understanding the phylogenetic relationships among sets of genes, 

traits, and organisms under investigation. However, large phylogenies that contain hundreds of 

taxa are increasingly becoming inaccessible to researchers interested in the relationships of just a 

few representatives. For example, some phylogenies are so large that taxon information is often 

challenging or impossible to visualize and is often excluded (Hug et al., 2016; Peter et al., 2018; 

Shen et al., 2018; Varga et al., 2019); similarly, the lengths of many internal branches are often 

very short and the constraints of displaying a large tree in a letter-sized page make the tracing of 

relationships among a subset of taxa challenging and unnecessarily time-consuming. These 

issues will increase in frequency as the numbers of taxa included in phylogenies of genes, 

metagenomes, genomes, etc. continues to rapidly rise.  

 

To address these issues, we introduce treehouse, a user-friendly application with minimal 

dependencies that facilitates the retrieval of subtrees from any user-specified set of taxa in a 

given phylogeny. Our simple three-step workflow allows users to obtain subtrees from a curated 

and growing database of large-scale phylogenetic trees from across the tree of life. Additionally, 

users may obtain subtrees from their own phylogenies which, can facilitate data exploration and 

 

14This work is published in: Steenwyk, J. L., and Rokas, A. (2019). Treehouse: a user-friendly 

application to obtain subtrees from large phylogenies. BMC Res. Notes 12, 541. 

doi:10.1186/s13104-019-4577-5. 
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inter-disciplinary collaboration. For easy integration into pre-existing project workflows, 

subtrees obtained from treehouse can be easily be downloaded as a newick file or PDF file that 

retains branch length information. Treehouse enables beginner and expert evolutionary biologists 

alike to reap the benefits of large-scale phylogenetic projects and use them to test evolutionary-

based hypotheses. 

 

Materials and Methods 

Data acquisition 

The treehouse contains a database of 20 representative large phylogenies from across the tree of 

life (Table 1 from Steenwyk and Rokas, 2019). 

 

Description of the software 

Using treehouse requires the R packages PHYTOOLS, version 0.6-60 (Revell, 2012), and SHINY, 

version 1.2.0 (https://shiny.rstudio.com/). Dependencies of PHYTOOLS includes MAPS, version 

3.3.0 (https://cran.r-project.org/web/packages/maps/index.html), and APE, version 5.3 (Paradis et 

al., 2004). To present the phylogeny as depicted by the original authors, phylogenies from 

treehouse’s database are rooted. The taxa chosen to root the phylogeny on are inferred from 

figures presented in the original manuscript or, in the case of phylogenies presented without taxa 

names, personal communications with the authors. Phylogenies are rooted using PHYTOOLS’S 

root() function. Using the list of taxa provided by the user, treehouse determines the list of taxa 

to remove from the phylogeny using the setdiff() function. The resulting list is then used to 

remove taxa in the phylogeny using PHYTOOLS’S drop.tip() function. To write out the resulting 

phylogeny in a newick-formatted text file or display it in a scalable-vector-graphic-formatted pdf 

https://shiny.rstudio.com/)
https://cran.r-project.org/web/packages/maps/index.html
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file, we use the write.tree() and plot.phylo() functions in APE, respectively. To create a user-

friendly and intuitive user-interface, we used SHINY. 

 

Results 

A three-step workflow to obtain subtrees 

treehouse is designed to have a simple user-interface that guides a user through an intuitive 

three-step workflow (Figure 57A) and user interface (Figure 57B). 

 

(1) Tree Selection  

A user can choose between five tabs - userTree, Animals, Fungi, Plants, and Tree of Life - 

located at the top of the user interface (Figure 57Ba). When using phylogenies from the 

treehouse database, a user selects the desired phylogeny using a dropdown menu (Figure 

57Bi; left). In userTree, a user selects a phylogeny in newick format from their local 

computer (Figure 57Bi; right). 

 

(2) Selection of Taxa 

A user next uploads a text file containing the single-column list of taxa that they want a 

subtree for (Figure 57Bii). Here, each taxon name must be identical to a taxon name in the 

full phylogeny. 

 

(3) Subtree output 

By clicking the ‘Update’ button, the user launches treehouse subtree retrieval. The subtree is 

plotted to the right of the side panel and buttons that allow the user to download a pdf or text 
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file of the subtree are below it (Figure 57Biii). Lastly, the full set of taxa in the currently 

uploaded treehouse phylogeny is listed (Figure 57Bc; left).  

 

 
Fig. 57. A simple three-step workflow for using treehouse. 

A Using treehouse requires three simple steps: (1) Tree selection: select a phylogeny from 

the treehouse database or a user-provided phylogeny that you want a subtree for; (2) Taxon 

selection: upload a list of taxa that a user wants to include in the subtree; and (3) Subtree output: 

download the newick-formatted text file or scalable-vector-graphic-formatted pdf file of the 

subtree. B Treehouse’s user interface features a navigation bar (a) to toggle between phylogenies 

available in treehouse’s databases for animals, fungi, plants, and the tree of life (left) and a user 

provided phylogeny in userTree (right). b To enable easy usage of treehouse, quick start 

directions are displayed. i A dropdown menu allows for selection of a larger phylogeny to obtain 
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a subtree from when using phylogenies in treehouse’s database. When using userTree, a browser 

function allows a user to upload their own phylogeny. ii A browser function allows the user to 

upload a list of taxa for the desired subtree. c A list of all possible taxa in phylogeny is provided. 

 

Discussion 

treehouse is a simple and powerful tool that facilitates subtree retrieval from large phylogenies.  

 

treehouse’s functionality rests on the performance of one task, namely removing taxa from a 

phylogeny. To the experienced phylogenetic or phylogenomic researcher, this might seem to be a 

trivial task but is not so for most users of phylogenetic trees and no other user-friendly methods 

are available. Thus, we anticipate the ‘typical’ treehouse users to be researchers that use 

phylogenies to form hypotheses but do not routinely infer phylogenies themselves. We also 

anticipate treehouse to be a useful teaching tool. 
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CHAPTER 16 

ggpubfigs: Colorblind-Friendly Color Palettes and ggplot2 Graphic System Extensions for 

Publication-Quality Scientific Figures15 

 

Introduction 

Scientific figures are graphical representations of scientific data (Rougier et al., 2014). Several 

tools have been developed to generate scientific figures in numerous computer programming 

languages, including seaborn (Waskom, 2021) and Matplotlib (Matplotlib Org., 2019) in the 

Python programming language, and lattice (Sarkar, 2017) and ggplot2 (Wickham, 2009) in the R 

programming language. These and other data visualization pieces of software have empowered 

researchers with the ability to generate scientific figures from diverse sources of quantitative 

data. As a result, methods and standards for effective scientific figures—which we define as 

accurate, clear, and precise representations of scientific data—have been a topic of rigorous 

debate that is in part influenced by field, audience, and data type (Lau and Vande Moere, 2007; 

Bertini et al., 2011; Moere and Purchase, 2011). 

 

Although certain rules of effective scientific figures are context-dependent and subject to change, 

some rules are broadly applicable to several disciplines, including in microbiology and the life 

sciences. These include two rules from Rougier et al.’s article titled Ten Simple Rules for Better 

Figures: “Do Not Trust the Defaults” and “Use Color Effectively” (Rougier et al., 2014). For the  

 

15This work is published in: Steenwyk, J. L., and Rokas, A. (2021). ggpubfigs: Colorblind-

Friendly Color Palettes and ggplot2 Graphic System Extensions for Publication-Quality 

Scientific Figures. Microbiol. Resour. Announc. 10. doi:10.1128/MRA.00871-21. 
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first rule, the authors suggest that default plotting parameters (e.g., font size, ticks, etc.) are 

sufficient to make a scientific figure but insufficient to make the “best” scientific figure; for the 

second, the authors suggest that color is an important component of human vision and therefore 

is equally important when making scientific figures. Effective color use can also make scientific 

figures more accessible. For example, 8% and 0.4% of European Caucasian men and women, 

respectively, are red-green color deficient (Birch, 2012). Thus, effective figure making is also a 

matter of inclusion. 

 

To facilitate generating effective figure making, we present ggpubfigs, an R package with 

colorblind friendly color palettes and ggplot2 extensions that facilitates the generation of 

publication-quality scientific figures for quantitative data 

(https://github.com/JLSteenwyk/ggpubfigs). More specifically, ggpubfigs contains six color 

palettes that are colorblind friendly and aim to increase accessibility of scientific figures and 

eight “themes,” which modify 21 parameters of a default ggplot2 figure. To demonstrate how 

ggpubfigs can improve scientific figures in R, we compare default ggplot2 settings (Figure 58A) 

to those modified using extensions or colorblind friendly color palettes available in ggpubfigs 

(Figure 58B-G). Users can create additional modifications to a scientific figure according to their 

specific needs. 

 

Materials and Methods 

ggpubfigs is freely available under the MIT license and is available for download on GitHub 

(https://github.com/JLSteenwyk/ggpubfigs). The GitHub repository comes complete with 

installation instructions and tutorials. Installing ggpubfigs is simple and only requires executing 

https://github.com/JLSteenwyk/ggpubfigs
https://github.com/JLSteenwyk/ggpubfigs
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one command. Tutorials detail how to use color palettes for qualitative and continuous and 

discrete quantitative data as well as utilizing ggplot2 theme extensions. 

 

 
 

Fig. 58. Examples of ggplot2 extensions and color palettes available in ggpubfigs. 

(A) Default scientific visualization made using ggplot2. (B to G) Modified scientific figures 

made using the simple theme (B), the simple theme with the ito seven color palette (C), the grid 
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theme (D), the grid theme with the contrast three color palette (E), the gray theme (F), and the 

gray theme with the bright seven color palette (G). Data are from the mtcars data frame available 

through the data sets package. 

 

Results 

Color palettes can be accessed using the “friendly_pal()” function. For example, 

friendly_pal("contrast_three") will provide users access to an object of class “palette” that 

contains the hex codes for the “contrast_three” color palette. Color palettes can be converted into 

a colormap of N colors—which may be useful for plotting data as a heatmap—using the 

following command: friendly_pal("contrast_three", N, type="continuous"). Themes that modify 

ggplot2 plots can be appended to the end of ggplot2 plotting command. For example, to use the 

“simple theme” in ggpubfigs, theme_simple(), an object of class gg theme, should be appended 

to the end of a ggplot2 plotting command. 

 

Discussion 

We anticipate ggpubfigs will assist researchers in generating effective scientific figures that are 

accessible to broad audiences including those that are colorblind. 
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CHAPTER 17 

Concluding discussion and future directions 

Here, I presented flagship research from my predoctoral work, which was focused on the 

evolutionary dynamics of fungi—in particular fungal pathogens and rapid evolutionary processes 

among fungi—and the development of new software for the life sciences with a focus on their 

application to evolutionary studies. This work describes novel findings and insights, but also 

raises exciting new questions. Thus, I hope that this work sets the stage for future research.  

 

Among studies aiming to unravel the evolutionary history of fungal pathogens, our finding that 

numerous fungal nonpathogens hold many of the same “cards of pathogenicity” as pathogenic 

fungi (Steenwyk et al., 2020c; Mead et al., 2021) suggests there may be some metaphorical 

shortcomings in the “pathogenic hand of cards” (Casadevall, 2007). For example, as Dr. 

Matthew Mead mentioned during a Dr. Antonis Rokas laboratory meeting, when “cards” are 

played, it is not just the identity of the “card” that is important but also its quantity. In other 

words, when and how much genetic determinants of virulence are “utilized” is an important 

consideration when studying fungal pathogenesis. This notion may be further examined using 

RNA-seq, dual-seq, or proteomics in virulence-related conditions. 

 

Studies evaluating rapid evolutionary processes among fungi have revealed novel research 

themes ripe for investigation. For example, how often and frequently eukaryotes lose DNA 

repair genes is currently unknown. Beyond punctuated sequence evolution, it is unclear what 

other aspects of genome evolution or life history are impacted by DNA repair gene loss, but we 

can speculate. For example, I hypothesize that chromosome rearrangement may occur at elevated 
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frequency in organisms that have lost numerous DNA damage response genes compared to close 

relatives that have not experienced these losses. I also hypothesize that the loss of DNA repair 

genes may contribute to the diversification of species. This idea is loosely supported by species 

boundaries typically being defined by genetic similarity (or lack thereof) (Jain et al., 2018); thus, 

as multiple lineage arise due to the increased frequency of de novo mutations, and as these 

lineages continue to diverge, one may find that the loss of a DNA repair gene can contribute to 

the emergence of a species-rich lineage. 

 

Our finding that A. latus arose via allodiploid hybridization, straddles the previous two research 

themes—the evolution of fungal pathogenicity and rapid evolutionary processes in fungi. Thus, 

this system may serve as a focal point for diverse studies and equally diverse insights. Some 

future research directions include elucidating the precise impact of hybridization on 

pathogenicity, which has been demonstrated in other fungal species (Stukenbrock, 2016; Mixão 

and Gabaldón, 2018). Also, evolutionarily, it remains unknown how many hybridization events 

gave rise to A. latus. Filling these knowledge gaps will be greatly enabled by additional 

population-level sequencing efforts as well as identifying, sequencing, and phenotyping the 

unknown parent that is closely related to A. quadrilineatus. Beyond basic research, this study 

also has clinical implications that can be used to inform disease management strategies. For 

example, our finding that A. latus isolates were frequently misidentified as A. nidulans suggests 

the frequency of infections caused by A. latus is unknown. Incorporating genomics into species-

level identification in the clinical setting (and other realms) will elucidate how frequently A. 

latus is causing disease. This information will be critical for shedding light on the epidemiology 

of A. latus and other pathogens. 
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More broadly, this finding underscores the importance of hybridization as a mechanism of 

evolution. This notion has been appreciated among other lineages, such as animals including the 

bears (Pongracz et al., 2017) and butterflies (Pardo-Diaz et al., 2012) and plants (Ellstrand et al., 

1996). Except for a few cases, the precise impact of hybridization on organismal fitness is not 

always clear. As a result, beyond identifying hybrid lineages, a deeper understanding of the 

biological impact of hybridization is warranted. 

 

The major insight gleaned from developing software—as I see it—is that current ecosystem for 

software engineers in the biosciences may not be long-term sustainable. Supporting this idea, 

approximately 30% of bioinformatic tools cannot be installed (Mangul et al., 2019b). This issue 

may stem from software no longer being maintained due to lack of support or they conduct 

analyses on file formats or data types that are no longer in use. Nonetheless, there are potential 

solutions to remedy this issue—for example, coursework at the junction of computer science and 

biology that enables biologists to learn industry-level standards of software development can 

alleviate some issues. Moreover, such a practice would represent a healthy cultural shift in 

placing greater importance on software development, a necessary component of keeping pace 

with data generation. Furthermore, the offerings of computer science have hardly been tapped by 

the biological sciences. Integrating more computer science courses into biological curriculum 

will help biologists realize their full potential.  

 

In my humble attempt to contribute to this cultural shift, I have implemented numerous practices 

commonplace to most software engineers, but less frequently discussed among biologists. For 
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example, all software I develop implements rigorous testing protocols (i.e., unit and integration 

tests) to ensure faithful functionality of software. In combination with continuous integration 

pipelines, the software I have developed is tested across multiple versions of Python, further 

strengthening long-term stability, and ensuring faithful function. Although these practices took a 

lot of effort early in the project, it has proven to be very helpful during later stages. For example, 

extensive unit and integration tests have led to code quality improvements and faster debugging 

when handling. 

 

In summary, my thesis—like those that came before mine and those that will come after—

represents a small but mighty advance in the sciences. Empowered by a stellar network of 

collaborators, we have furthered our understanding and identified novel knowledge gaps that 

raise exciting new questions in the fields of fungal pathogenesis, evolution, and software 

development that warrant further research and effort. I hope that this thesis serves as a source of 

inspiration for future discoveries. Further, I hope the journey of completing future research in 

these disciplines and beyond enables scientists to discover what is most important: oneself and 

their relationship with others through the lens of teamwork, camaraderie, compassion, courage, 

hard work, humility, forgiveness and more. 
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